
Simulink® Verification and
Validation

For Use with Simulink®

Modeling

Simulation

Implementation

User’s Guide
Version 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink Verification and Validation User’s Guide

© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.2 (Release 14SP2)
April 2005 Second printing Revised for Version 1.1 (Web release)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.2 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)

Contents

Getting Started

1
What Is Simulink Verification and Validation? 1-2

System Requirements . 1-3
Operating System Requirements . 1-3
Product Requirements . 1-3

Organization of This User’s Guide 1-4

Managing Model Requirements

2
What Is the Requirements Management Interface? . . . 2-3

Configuring the Requirements Management
Interface . 2-4

Adding and Viewing Requirement Links 2-5
Object and Document Types . 2-5
Adding Requirement Links to an Object 2-8
Viewing Requirements Documents 2-13
Resolving the Document Path . 2-15
Adding Requirement Links to Multiple Objects

Simultaneously . 2-17
Selection-Based Linking . 2-20

Linking to Custom Types of Requirements
Documents . 2-28
Why Create a Custom Link Type? . 2-28
Custom Link Type Registration . 2-28
Built-In Link Types . 2-29

v

Link Properties . 2-29
Link Type Properties . 2-30
Creating a Custom Link Requirement Type 2-31
Navigating to Simulink from External Documents 2-41

Viewing Objects with Requirement Links 2-44

Generating a Requirements Report 2-47

Displaying the System Requirements in a Diagram . . . 2-49
Adding the System Requirements Block 2-49
Renaming the System Requirements Block 2-52
Changing Fonts for the System Requirements Block 2-53

Including Requirements with Generated Code 2-55

Managing Model Requirements with DOORS

3
What Is the Requirements Management Interface for

DOORS? . 3-2

Configuring the Requirements Management Interface
for DOORS . 3-3
Installing DOORS Before RMI . 3-3
Installing DOORS After RMI . 3-3
Upgrading DOORS . 3-3
Manual Installation for DOORS . 3-4

Starting the Requirements Management Interface for
DOORS . 3-5

Linking Objects to DOORS Requirements 3-7
Creating a DOORS Requirement Object 3-7
Linking a Simulink or Stateflow Object to a DOORS

Requirement . 3-9

vi Contents

Synchronizing DOORS with the Simulink Model 3-12
Synchronizing a Model with DOORS 3-13
Customizing the Level of Synchronization Detail 3-15
Customizing the DOORS Synchronization Settings 3-20
Linking Requirements to the DOORS Synchronized

Module . 3-22

Navigating Between Model Objects and DOORS 3-24
Viewing Model Elements with Requirements 3-24
Navigating from Simulink to DOORS 3-26
Navigating from DOORS to Simulink 3-28

Managing Model Verification Blocks

4
Using Model Verification Blocks . 4-2

Using the Verification Manager . 4-5
Opening the Verification Manager . 4-5
Enabling and Disabling Model Verification Blocks with the

Verification Manager . 4-10
Using Enabling and Disabling Tools in the Verification

Manager . 4-14

Managing Verification Requirements 4-18

Using Model Coverage

5
Introduction to Model Coverage . 5-3

How Model Coverage Works . 5-3
Types of Model Coverage . 5-3
Blocks That Receive Model Coverage 5-5

Using Model Coverage . 5-8

vii

Creating and Running Test Cases . 5-8

Specifying Model Coverage Reporting Options 5-11
Coverage Tab . 5-11
Results Tab . 5-13
Report Tab . 5-14
Options Tab . 5-18

Understanding Model Coverage Reports 5-20
Summary Report Section . 5-20
Details Report Section . 5-21
Decisions Analyzed Table . 5-23
Conditions Analyzed Table . 5-23
MC/DC Analysis Table . 5-24

N-Dimensional Lookup Table Report 5-26

Signal Range Analysis Report . 5-32

Colored Simulink Diagram Coverage Display 5-35
How Model Coverage Highlighting Works 5-35
Enabling the Colored Diagram Display 5-35
Displaying Model Coverage with Model Coloring 5-36
Accessing Coverage Information for Colored Blocks 5-38

Using Model Coverage Commands 5-40
Creating Tests with cvtest . 5-40
Running Tests with cvsim . 5-42
Producing HTML Reports with cvhtml 5-43
Saving Test Runs to a File with cvsave 5-43
Loading Stored Coverage Test Results with cvload 5-44
Coverage Script Example . 5-45

Model Coverage for Embedded MATLAB Function
Blocks . 5-46
Types of Model Coverage in Embedded MATLAB Function

Blocks . 5-46
Creating a Model with Embedded MATLAB Function Block

Decisions . 5-47
Understanding Embedded MATLAB Function Block Model

Coverage . 5-50

viii Contents

Customizing the Model Advisor

6
The Customization Process . 6-3

Demo and Code Example . 6-4

Creating Callback Functions for Checks 6-5
Simple Check Callback Function . 6-5
Detailed Check Callback Function . 6-6
Check Callback Function with Hyperlinked Results 6-7

Defining Custom Checks . 6-12
Properties of Model Advisor Checks 6-12
How Visible, Enable, and Value Properties Interact 6-15
Code Example: Check Definition Function 6-15

Defining Custom Tasks . 6-17
Properties of Model Advisor Tasks . 6-17
How Visible, Enable, and Value Properties Interact for

Tasks . 6-18
Code Example: Task Definition Function 6-18

Defining a Process Callback Function 6-20
Process Callback Function Arguments 6-20
Code Example: Process Callback Function 6-21

Registering Custom Checks and Tasks 6-23
Methods for Registering Custom Checks and Tasks 6-23
Code Example: Methods for Registering Custom Checks

and Tasks . 6-24

Functions — By Category

7
Requirements Management Interface 7-2

ix

Model Coverage . 7-3

Functions — Alphabetical List

8

Blocks — Alphabetical List

9

Examples

A
Requirements Management Interface A-2

Requirements Management Interface - DOORS
Version . A-2

Verification Manager . A-2

Model Coverage . A-2

Index

x Contents

1

Getting Started

Simulink® Verification and Validation uses component tools that contribute
to the work of certifying the correct design, implementation, and testing of
Simulink models. Use the following topics to introduce yourself to Simulink
Verification and Validation.

What Is Simulink Verification and
Validation? (p. 1-2)

Tells you why you want to use
Simulink Verification and Validation
in your models

System Requirements (p. 1-3) Lists system requirements necessary
to qualify for installation

Organization of This User’s Guide
(p. 1-4)

Describes the expected background
for using Simulink Verification and
Validation and the organization of
this guide

1 Getting Started

What Is Simulink Verification and Validation?
Simulink Verification and Validation is a Simulink product that helps you
do the following:

• Establish requirements for a Simulink model by linking them with model
elements that satisfy them

• Verify proper function of the model by monitoring model signals during
extensive testing

• Validate the model, making sure that all possible model decisions are taken
through testing.

• Customize the Model Advisor to analyze a model for settings that result in
inaccuracies or inefficiencies.

In short, the elements of Simulink Verification and Validation give you
confidence in the behavior of your Simulink models.

1-2

System Requirements

System Requirements
The following topics are included in this section:

• “Operating System Requirements” on page 1-3

• “Product Requirements” on page 1-3

Operating System Requirements
Simulink Verification and Validation works with the following operating
systems:

• Microsoft Windows 2000 and Windows XP systems

• UNIX systems where MATLAB® supports Java (for HTML-based
requirements documents only)

Product Requirements
Simulink Verification and Validation requires the following software products
from The MathWorks:

• MATLAB

• Simulink

If you want to use the Requirements Management Interface with Stateflow®

diagrams, then Simulink Verification and Validation requires the following
software product:

• Stateflow

The Requirements Management Interface in Simulink Verification and
Validation allows you to associate requirements with Simulink models and
Stateflow diagrams. Simulink Verification and Validation supports the
following applications for documenting requirements:

• Microsoft Word 2000 or later

• Microsoft Excel 98 or later

• Telelogic DOORS 6.0 or later

1-3

1 Getting Started

Organization of This User’s Guide
The components of the Simulink Verification and Validation tools are
organized on the basis of work flow that you follow in certifying the correct
and complete behavior of your models. This work flow is described in the
following steps:

1 Establish performance requirements for the model and link them with
model elements using the Requirements Management Interface, which is
described in the following chapters:

• Chapter 2, “Managing Model Requirements” — Instructions for using
the standard version of the Requirements Management Interface. Use
this to associate Simulink models, Stateflow diagrams, and MATLAB
M-files with requirements in HTML, Microsoft Word, and Microsoft
Excel documents.

• Chapter 3, “Managing Model Requirements with DOORS” —
Instructions for using the DOORS version of the Requirements
Management Interface. Use this if you use the DOORS requirements
management system and want to associate Simulink models, Stateflow
diagrams, and MATLAB M-files with requirements in DOORS.

2 Verify proper performance of the model by monitoring model signals during
extensive testing with model verification blocks using the Verification
Manager, which is described in the following chapter:

• Chapter 4, “Managing Model Verification Blocks” — Shows you how
to use verification blocks individually in Simulink models and how to
manage them as a group for testing.

3 Validate the model by making sure that all possible model decisions are
taken through testing, by using the Model Coverage tool, which is described
in the following chapter:

• Chapter 5, “Using Model Coverage” — Shows you how to generate and
interpret model coverage reports and displays for validating model
decisions.

4 Customize the Model Advisor to analyze your model for conditions and
configuration settings that result in inaccurate or inefficient simulation

1-4

Organization of This User’s Guide

or code generation. You can write custom checks, tasks, and callback
functions, as described in the following chapter:

• Chapter 6, “Customizing the Model Advisor” — Shows you how to
define custom checks and tasks, write callback functions, and register
customizations for Model Advisor.

The last portion of the User’s Guide is comprised of function and block
reference chapters:

• Chapter 7, “Functions — By Category” — Provides a categorical list of
functions used in executing and managing model coverage tests and
reports from MATLAB. Automate your model coverage tests with scripts
of MATLAB commands calling these functions.

• Chapter 8, “Functions — Alphabetical List” — Provides an alphabetical
reference of functions used in executing and managing model coverage
tests and reports from MATLAB.

• Chapter 9, “Blocks — Alphabetical List” — Provides reference information
for the Simulink Verification and Validation library, which currently
contains only one block, System Requirements. This block lets you list all
the requirements for a model or subsystem on its Simulink diagram.

1-5

1 Getting Started

1-6

2

Managing Model
Requirements

The Requirements Management Interface (RMI) associates requirements
documents with objects in Simulink models. To learn how to use the RMI, see
the following sections:

What Is the Requirements
Management Interface? (p. 2-3)

Introduces you to the Requirements
Management Interface for linking
requirements documents to model
elements

Configuring the Requirements
Management Interface (p. 2-4)

Describes what you need to do
before using the Requirements
Management Interface

Adding and Viewing Requirement
Links (p. 2-5)

Shows you how to link model
elements with requirements
documents, and modify both links
and documents

Linking to Custom Types of
Requirements Documents (p. 2-28)

Shows you how to register additional
types of requirements documents
and create links to them

Viewing Objects with Requirement
Links (p. 2-44)

Shows you how to provide
meaningful displays of model
elements that are linked to
requirements documents

Generating a Requirements Report
(p. 2-47)

Shows you how to generate a report
on all the requirements associated
with a model and its blocks

2 Managing Model Requirements

Displaying the System Requirements
in a Diagram (p. 2-49)

Shows you how to display the
system requirements directly in your
Simulink diagram

Including Requirements with
Generated Code (p. 2-55)

Shows you how to specify that
requirements descriptions are
included in generated code for your
model

2-2

What Is the Requirements Management Interface?

What Is the Requirements Management Interface?
The Requirements Management Interface (RMI) allows you to associate
requirements with Simulink models and Stateflow diagrams. Simulink and
Stateflow requirements have the following parts:

• A requirement description of up to 255 characters

• The pathname of a requirements document, such as a Microsoft Word file.
(Simulink supports several built-in document formats and also allows you
to register your own custom types of requirements documents.)

• A link to a location inside the requirements document

Use the Requirements Management Interface to

• Associate requirements with

- Simulink models

- Simulink subsystems and blocks

- Stateflow charts, states, transitions, boxes, and functions

• Navigate from a Simulink block or Stateflow object in a diagram or in the
Model Explorer to a requirement

• Navigate from an embedded link in a requirements document to the
corresponding Simulink or Stateflow object (when you create two-way links
using the selection-based linking mechanism)

• View objects in Simulink or Stateflow diagrams that have requirements
associated with them

2-3

2 Managing Model Requirements

Configuring the Requirements Management Interface
Before you start using the Requirements Management Interface, in the
MATLAB Command Window type

rmi setup

This command runs a setup script that installs the ActiveX controls, needed
for establishing two-way selection-based links. If DOORS is installed on the
machine, this command also invokes the DOORS setup. For more information,
see “Configuring the Requirements Management Interface for DOORS” on
page 3-3.

2-4

Adding and Viewing Requirement Links

Adding and Viewing Requirement Links
You use the Requirements dialog box to associate a requirements document
with a requirements object.

Use the following topics to learn how to add, view, and modify requirements
you associate with a requirements object:

• “Object and Document Types” on page 2-5 — Learn about the supported
types of objects, requirements documents, and locations within the
documents.

• “Adding Requirement Links to an Object” on page 2-8 — Make a link
between a model element and a requirements document.

• “Viewing Requirements Documents” on page 2-13 — Edit a requirements
document through the model element it is linked to.

• “Resolving the Document Path” on page 2-15 — Learn where the
Requirements Management Interface looks to resolve the absolute or
relative path you specify for a requirement.

• “Adding Requirement Links to Multiple Objects Simultaneously” on page
2-17 — Make a link between each of a group of selected model elements
and a requirements document.

• “Selection-Based Linking” on page 2-20 — Use a simplified procedure
to make a two-way link between a model element and a requirements
document.

Object and Document Types
You can add requirements to the following types of objects:

• Simulink model

• Simulink block

• Stateflow chart, state, transition, box, or function

2-5

2 Managing Model Requirements

Note You can add requirements to top-level reference blocks but not to their
contents. For example, if you copy a subsystem consisting of multiple blocks
from a library, you will be able to add requirements to the subsystem block in
your model, but not to its component blocks.

The Requirements Management Interface supports the following built-in
types of requirements documents:

• Text

• HTML

• Microsoft Word

• Microsoft Excel

• PDF

You can also link to a DOORS item (see “Linking Objects to DOORS
Requirements” on page 3-7), or register your own custom type of documents
to link to (see “Linking to Custom Types of Requirements Documents” on
page 2-28).

Location Types
Depending on the document type, you can link to specific locations within
a document.

Document
Type

Location Options

Text • Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.

• Line number — Type a line number in the Location text
field. The Requirements Management Interface makes a
link to the specified line.

2-6

Adding and Viewing Requirement Links

Document
Type

Location Options

HTML You can only link to a named anchor.

For example, if you define the anchor

 ...contents...

in your HTML requirements document, you can enter
valve_timing in the Location text field or click the
Document Index tab to select valve_timing from an
automatically generated list of anchors in the document.

Microsoft
Word

• Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.

• Named item — Link to a bookmark within the document.
The Requirements Management Interface automatically
generates a document index based on its headings and
bookmarks, or you can type the name in the Location
text field.

• Page/item number — Type a page number in the Location
text field. The Requirements Management Interface makes
a link to the top of the page.

Microsoft
Excel

• Search text — Type a string in the Location text field.
The Requirements Management Interface searches for the
first occurrence of the text string within the document.

• Named item — Link to a named item within the document
(defined in Excel using Insert —> Name). Type the name
in the Location text field.

• Sheet range — Type a cell number or a range of cells (such
as C5:D7) in the Location text field. The Requirements
Management Interface makes a link to the specified cell
or cells.

2-7

2 Managing Model Requirements

Document
Type

Location Options

PDF • Named item — Link to a bookmark within the document.
The Requirements Management Interface automatically
generates a document index based on its headings and
bookmarks, or you can type the bookmark name in the
Location text field.

• Page/item number — Type a page number in the Location
text field. The Requirements Management Interface makes
a link to the top of the page.

Web
Browser
URL

You can link to a URL location only. Type the URL location
string in the Document text field. When you follow the link,
the document opens in the system Web browser.

Adding Requirement Links to an Object
You can link a particular location in an existing Microsoft Word or HTML
document to a block in a Simulink diagram or a Stateflow object in a Stateflow
diagram. In the following procedure, you add three requirement links to a
Simulink block in the demo model sf_car. In later topics, you modify both the
links and the documents they point to.

1 Create and save the Microsoft Word document requirements.doc with
the following format:

Primary Requirements
<filler text - 10 lines>

Secondary Requirements
<filler text - 10 lines>

Tertiary Requirements
<filler text - 10 lines>

2 Open the demo model sf_car by typing sf_car at the MATLAB prompt.

3 Right-click the Engine block and, from the resulting pop-up menu, select
Requirements > Edit/Add Links.

The Requirements dialog box for the Engine block appears, as shown.

2-8

Adding and Viewing Requirement Links

You can access the Requirements dialog box to add requirements in the
following right-click contexts.

Model Element Context

Simulink model Simulink diagram — Empty diagram space

Simulink block Simulink diagram
Model Explorer Contents pane

Stateflow chart Simulink diagram — Stateflow block
Stateflow diagram — Empty diagram space

Stateflow object Stateflow diagram
Model Explorer Contents pane

4 In the Requirements dialog box, click New to add a new default
requirement.

2-9

2 Managing Model Requirements

Fields and tools of the Requirements dialog box are now enabled for a
default unspecified requirement, as shown.

5 Click in the Description field and enter Requirement 1.

6 Click Browse next to the Document Type field, browse to the
requirement file requirements.doc, and select Open.

Note that the Document Type field is now set to Microsoft Word. If you
specify the document type in the Document Type field prior to browsing
for the requirements document, only the files of the appropriate type are
shown in the browser. If you set Document Type to Unspecified Type,
the browser shows all files.

7 To define a particular location in the document, click the Document Index
tab and select Primary Requirements from an automatically generated list
of headings and bookmarks in the document. Alternately, you can just type

2-10

Adding and Viewing Requirement Links

Primary Requirements in the Location text field on the Requirements
tab.

8 To associate comments with the requirement link, enter text in the User
tag field. Use this field when you want to provide further details about the
requirement, supplementing the Description field. Entering text in the
User tag field is optional.

9 With Requirement 1 selected, click Copy to add a copy of Requirement 1
as a new requirement.

10 Modify the copy of Requirement 1 to be Requirement 2, pointing to the text
“Secondary Requirements” in the document requirements.doc.

In addition to the Copy tool, you can edit existing requirements using the
following tools.

2-11

2 Managing Model Requirements

Tool Button Description

Delete Deletes the requirement

Up Moves the selected requirement up one line in the list
of requirements

Down Moves the selected requirement down one line in the list
of requirements

As you add requirements, the Requirements dialog box makes it easier for
you to enter a previous document name by remembering up to five of the
most recent documents entered. The list of five is taken for all entries made
across all models. For example, if you were to add a new requirement after
entering two requirements for the Engine block, and click the drop-down
arrow in the Document field for the new requirement, a selectable list of
previous documents like the following example would appear.

2-12

Adding and Viewing Requirement Links

11 Click OK to apply the requirement links you have added and close the
Requirements dialog box.

Note When you add a requirement link to a block such as a subsystem, the
requirement is not added to children of the block.

12 Save the model as my_sf_car.mdl.

Viewing Requirements Documents
You can access a requirements document through its associated model
element. You added requirement links to the Engine block of the model
my_sf_car in “Adding Requirement Links to an Object” on page 2-8. To access
the document for the second requirement link, do the following:

1 Open the model my_sf_car that you saved in the previous topic, “Adding
Requirement Links to an Object” on page 2-8.

2 Right-click the Engine block and select Requirements from the context
menu.

The requirements you added now appear as submenu selections, as shown.

2-13

2 Managing Model Requirements

3 Select Requirement 2 from the submenu.

The document requirements.doc opens in its editor, Microsoft Word,
scrolled to the highlighted first occurrence of the text “Secondary
Requirements,” as shown.

2-14

Adding and Viewing Requirement Links

If a string location in the file is not specified, the document appears scrolled
to the top of the file.

4 Try to access the other requirements and make sure that they open scrolled
to the specified text location.

Resolving the Document Path
Browsing for a document to enter it in a requirements link enters the location
of the document with a fully specified absolute path. You can also enter a
relative path for the document location. A relative path can be a partial path
or no path at all. In many cases it is preferable to use a relative path so that
the document is not constrained to a single location in the file system. With
a relative path the Requirements Management Interface resolves the exact
location of the requirements document with the following procedure:

1 An attempt is made to resolve the path relative to the current MATLAB
directory.

2 If there is no path specification and the document is not in the current
directory, the MATLAB search path is used to locate the file.

3 If the document is not located relative to the current directory or the
MATLAB search path, it is resolved relative to the model file directory.

2-15

2 Managing Model Requirements

The following examples illustrate the procedure for locating the specified
requirements document.

Relative Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

Document link: ..\reqs\pid.html

Documents searched for:
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

No Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

Requirements
document:

pid.html

Documents searched for:
(in order)

C:\work\reqs\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Specified Example

Current MATLAB
directory:

C:\work\scratch

Model file: C:\work\models\controllers\pid.mdl

Requirements
document:

C:\work\reqs\pid.html

Documents searched for: C:\work\reqs\pid.html

2-16

Adding and Viewing Requirement Links

Adding Requirement Links to Multiple Objects
Simultaneously
In “Adding Requirement Links to an Object” on page 2-8, you added
requirement links to an individual block. You can also add or delete
requirement links for a selection of multiple Simulink blocks or Stateflow
objects as follows:

1 Open the demo model my_sf_car you saved in “Adding Requirement
Links to an Object” on page 2-8 and select the Engine, engine RPM, and
transmission blocks.

You can select multiple Simulink blocks or Stateflow objects in one of the
following ways:

• Hold down the Shift key while clicking each block.

• Click and drag a selection rectangle around them.

2-17

2 Managing Model Requirements

2 Right-click any of the selected blocks and, from the resulting context menu,
select Requirements > Add Links to All.

The Add Requirements dialog box appears, as shown, for the three selected
blocks.

3 Add a new Requirement 3 for the set of blocks that points to the text
“Tertiary Requirements” in the file requirement.doc.

Add the requirement as you would for a single block as described in
“Adding Requirement Links to an Object” on page 2-8.

Note When you add a requirement link to a block such as a subsystem, the
requirement is not added to children of the block.

2-18

Adding and Viewing Requirement Links

4 Click outside the three objects to deselect them.

5 Right-click the Engine block and select Requirements.

The Engine block now has three requirements, as shown.

6 Right-click the engine RPM and transmission blocks to verify that they
have only one requirement.

7 Save the model (my_sf_car).

Deleting All Requirement Links for Multiple Objects
Simultaneously
In “Adding Requirement Links to Multiple Objects Simultaneously” on page
2-17, you added requirement links to each block in a multiple selection of
blocks. To delete the existing requirements for a group of selected blocks,
right-click any of a group of selected blocks and, from the resulting context
menu, select Requirements > Delete All. Notice that this deletes all of the

2-19

2 Managing Model Requirements

requirement links for all of the selected blocks, whether they were added
individually or as a group.

Selection-Based Linking
Selection-based linking is a quick way to make links between model elements
and selected portions of a requirements document, which can be a Microsoft
Word or Microsoft Excel file only. This method provides an ability to create
two-way links by embedding an ActiveX control into the requirements
document next to the selected string or cell.

The following tasks show you how to work with selection-based linking:

• “Opening the External Application” on page 2-20

• “Specifying Your Linking Preferences” on page 2-21

• “Making Selection-Based Links” on page 2-22

• “Navigating from the Requirements Document to the Simulink Model”
on page 2-25

Opening the External Application
Before creating selection-based links, you need to establish communication
between Simulink and the external application (Microsoft Word or Microsoft
Excel) by opening the application from Simulink. The document you open
cannot be read-only, or be already open in another application.

Note If you open a document some other way and try to create selection-based
links to it, Simulink displays an error message.

Use the following procedure to open a document for selection-based linking:

1 Open the model my_sf_car.

2 In Simulink, from the Tools menu, select Requirements > Link settings.
The Selection-based linking dialog box opens.

2-20

Adding and Viewing Requirement Links

Another way to open the Selection-based linking dialog box is to right-click
on a Simulink block and, from the resulting pop-up menu, select
Requirements > Link settings.

3 From the drop-down list next to Word, select requirements.doc. Note
that the Browse button to the right of it changes to Open. Click the Open
button. The document requirements.doc opens in its editor, Microsoft
Word.

Note If you click Browse with no document selected, the Requirement
Management Interface lets you browse to the document of the appropriate
type to open it.

You can now make links between the blocks in the my_sf_car model and
portions of the requirements.doc document, as described in “Making
Selection-Based Links” on page 2-22.

Specifying Your Linking Preferences
In selection-based linking, the process of making links is streamlined
to minimize the number of menu clicks necessary to create a link. The
Selection-based linking dialog box lets you specify your preferences:

2-21

2 Managing Model Requirements

• Two-way linking embeds an ActiveX control in your requirements
document, which lets you navigate from the requirements document to
the Simulink model. If you don’t want to create two-way links, clear the
Modify documents to include links to models check box.

• Use the Document file reference drop-down list to specify how to store
the document location. For more information on the choices available, see
“Resolving the Document Path” on page 2-15.

• If you create two-way links, use the Model file reference drop-down list
to similarly specify how to resolve the model location when you navigate
from a requirements document to the Simulink model.

Making Selection-Based Links
Use the following procedure to create selection-based requirement links:

1 Open the requirements.doc document, as described in “Opening the
External Application” on page 2-20.

2 Select a portion of the text that documents the desired requirement.
For example, select a “Dummy text.” string, as shown in the following
illustration.

2-22

Adding and Viewing Requirement Links

3 In the Simulink diagram, right-click the Engine block and, from the
resulting pop-up menu, select Requirements > Add link to Word
selection.

The Requirement Management Interface creates the link. If you right-click
on the Engine block and select Requirements, the Engine block will now
have four requirement links, as shown. You can use this link to navigate
from the model to the requirements document, as described in “Viewing
Requirements Documents” on page 2-13.

2-23

2 Managing Model Requirements

Because your linking preferences are set to two-way linking, an ActiveX

control is embedded in the requirements document next to the selected
string, as shown in the next illustration. You can use it to navigate from
the requirements document to the model, as described in “Navigating from
the Requirements Document to the Simulink Model” on page 2-25.

2-24

Adding and Viewing Requirement Links

Note If you have the Requirements dialog box open, you can use the Word
and Excel buttons next to the Update fields with current selection in
label to create selection-based links to Microsoft Word or Microsoft Excel
requirements documents, respectively.

Navigating from the Requirements Document to the Simulink
Model
When you create two-way links, the Requirements Management Interface
embeds an ActiveX control in your requirements document next to the

2-25

2 Managing Model Requirements

selected string or cell. This allows you to navigate from the requirements
document to the Simulink model.

1 Open the requirements.doc document in Microsoft Word.

2 Click the ActiveX control embedded in the requirements document.

The Requirements Management Interface opens the model my_sf_car and
highlights the Engine block, as shown in the following illustration.

2-26

Adding and Viewing Requirement Links

The requirement item that is linked with the ActiveX control is identified
internally with a special unique string that is saved in the model. If you
rename the item or change the path, the links in the external document will
continue to work.

2-27

2 Managing Model Requirements

Linking to Custom Types of Requirements Documents
In addition to linking to built-in types of requirements documents described
above, you can register your own custom types of requirements documents
with the Requirements Management Interface, and then create requirement
links to these types of documents.

Why Create a Custom Link Type?
Custom link types let you define how a document will be opened and
navigated, and how you or another user can browse for a document and view
an index of its contents. When you define a custom link type, you create
MATLAB M-code functions that perform these operations. The Requirements
Management Interface invokes the registered code when navigating to a
document with the new link type, and when browsing for a document or
displaying the index of a document within the Requirements dialog box.

Using the external interfaces supported by MATLAB, you can communicate
with external applications and run programs from the command shell. You
can also use the built-in Web browser and text editor to display custom
variants of HTML and text files without loading external applications.

Custom link types enable you to

• Link to requirement items in commercial requirement tracking software

• Link to in-house database systems

• Link to document types that are not internally supported in the tool

Custom Link Type Registration
You register custom link types with a unique MATLAB function name. The
function must exist on the MATLAB path and must not require any input
arguments. It must return a single output argument that is an instance of
the requirements link type class. You can register your link type with the
following MATLAB command:

rmi register mytargetfilename

where mytargetfilename is the name of the MATLAB function contained in
the M-file named mytargetfilename.m.

2-28

Linking to Custom Types of Requirements Documents

Once you register a link type, it appears as an entry in the Document type
drop-down list in the Requirements dialog box. The list of registered link
types is stored in a file in your preference directory, so it can be restored
in new MATLAB sessions. You can remove a link type with the following
MATLAB command:

rmi unregister mytargetfilename

When you create links using custom link types, the registration name is
saved in the model. When you attempt to navigate a link, the Requirements
Management Interface resolves the link type against the registered list and
displays an error message if the link type is not found.

Built-In Link Types
Built-in link types use the same format and naming convention as custom
types, although they use a different system for identification in the model file
that supports backwards and forwards compatibility. You can use the built-in
types as examples when developing your custom link types. The files for
built-in link types are contained in the private directory of the requirements
management tool (matlabroot\toolbox\slvnv\reqmgt\private):

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_pdf.m
linktype_rmi_text.m
linktype_rmi_word.m

Link Properties
Requirement links are the data structures, saved in the Simulink model,
that identify a specific location within a document. You can get and set the
links on a block using the rmi command. Link information is encapsulated
within a MATLAB structure array. Each element of the array is a single
requirement link.

Links and link types work together to perform navigation and manage
requirement interfaces. The document and ID fields of links uniquely identify
the linked item in an external document. The Requirements Management
Interface passes both of these string parameters to the navigation command of

2-29

2 Managing Model Requirements

the associated link type when it follows a link from the model or a generated
report.

Link Type Properties
Link type properties define how links are created, identified, navigated and
stored within the requirement management tool. The following table explains
each of these properties.

Property Description

Registration The name of the M-file that creates the link type. This is
stored in the Simulink model.

Label A string to identify this link type. It is displayed on the
Document Type drop-down list in the Requirements
dialog box for a Simulink or Stateflow object.

IsFile A Boolean property that indicates if the linked documents
are files within the computer file system. If a document is
a file, then the standard method for resolving the path is
used and the standard file selection dialog is invoked when
the user clicks the Browse button in the Requirements
dialog box.

Extensions An array of file extensions. These are used as filter options
for the Browse button in the Requirements dialog box.
The extensions are also used to infer the link type based
on the document name. If more than one link type is
registered for the same file extension, the link type that
was registered first will take priority.

LocDelimiters A string containing the list of supported navigation
delimiters. The first character in the ID of a requirement
specifies the type of identifier. For example, an identifier
might refer a specific page number (#4), a named bookmark
(@my_tag), or some text to search (?search_text). The
valid location delimiters determine the possible entries on
the Location drop-down list in the Requirements dialog
box.

2-30

Linking to Custom Types of Requirements Documents

Property Description

NavigateFcn The MATLAB callback that is invoked when a user
follows a link. The function is evaluated with two input
arguments, the document field and the ID field of the link:

feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback that is invoked when a user clicks
Document Index tab in the Requirements dialog box.
This function is evaluated with a single input argument
containing the full path of the resolved function, or the
entry from the Document field if the link type is not a
file. The function should return three outputs:

• Labels

• Depths

• Locations

BrowseFcn The MATLAB callback that is invoked when a user presses
the Browse button in the Requirements dialog box. This
function is unnecessary when the link type is a file. The
function should not take any input arguments and should
return a single output argument identifying the document
that the user selected.

Creating a Custom Link Requirement Type
In this example, you implement a custom link type to a hypothetical document
format, which is a text file with the extension .abc. Within a document, the
requirement items are identified with a special text string Requirement::,
followed by a single space and then the requirement item inside double quotes
(").

You provide the ability to see a document index, containing a listing of all
the requirement items. When navigating from the Simulink model to the
requirements document, the document opens in the MATLAB editor and pans
the display to the line containing the desired requirement item.

Use the following procedure to create a custom link requirement type:

2-31

2 Managing Model Requirements

1 Write a function that implements the custom link type and save it as an
M-file on MATLAB path. In this example, the file rmicustabcinterface.m,
containing the function rmicustabcinterface that implements the ABC
files, is included in the installation. You can view it below, or by typing
edit rmicustabcinterface at the MATLAB prompt.

function linkType = rmicustabcinterface
%RMICUSTABCINTERFACE - Example custom requirement link type
%
% This file implements a requirements link type that maps
% to "ABC" files.
% You can use this link type to map a line or item within an ABC
% file to a Simulink or Stateflow object.
%
% You must register a custom requirement link type before using it.
% Once registered, the link type will be reloaded in subsequent
% sessions until you unregister it. The following commands
% perform registration and registration removal.
%
% Register command: >> rmi register rmicustabcinterface
% Unregister command: >> rmi unregister rmicustabcinterface
%
% There is an example document of this link type contained in the
% requirement demo directory to determine the path to the document
% invoke:
%
% >> which demo_req_1.abc

% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 1.1.4.2 $ $Date: 2005/04/07 20:00:10 $

% Create a default (blank) requirement link type
linkType = ReqMgr.LinkType;
linkType.Registration = mfilename;

% Label describing this link type
linkType.Label = 'ABC file (for demonstration)';

% File information
linkType.IsFile = 1;

2-32

Linking to Custom Types of Requirements Documents

linkType.Extensions = {'.abc'};

% Location delimiters
linkType.LocDelimiters = '>@';
linkType.Version = ''; % not needed

% Uncomment the functions that are implemented below
linkType.NavigateFcn = @NavigateFcn;
linkType.ContentsFcn = @ContentsFcn;

function NavigateFcn(filename,locationStr)
if ~isempty(locationStr)

findId=0;
switch(locationStr(1))
case '>'

lineNum = str2num(locationStr(2:end));
openFileToLine(filename, lineNum);

case '@'
openFileToItem(filename,locationStr(2:end));

otherwise
openFileToLine(filename, 1);

end
end

function openFileToLine(fileName, lineNum)
if lineNum > 0

err = javachk('mwt', 'The MATLAB Editor');
if isempty(err)

editor = com.mathworks.mlservices.MLEditorServices;
editor.openDocumentToLine(fileName, lineNum);

end
else

edit(fileName);
end

function openFileToItem(fileName, itemName)
reqStr = ['Requirement:: "' itemName '"'];

2-33

2 Managing Model Requirements

lineNum = 0;
fid = fopen(fileName);
i = 1;
while lineNum == 0

lineStr = fgetl(fid);
if ~isempty(strfind(lineStr, reqStr))

lineNum = i;
end;
if ~ischar(lineStr), break, end;
i = i + 1;

end;
fclose(fid);
openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)
% Read the entire M-file into a variable
fid = fopen(filePath,'r');
contents = char(fread(fid)');
fclose(fid);

% Find all the requirement items
fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list
items = [fList1{:}]';
items = sort(items);
items = strcat('@',items);

if (~iscell(items) && length(items)>0)
locations = {items};
labels = {items};

else
locations = [items];
labels = [items];

end

depths = [];

2-34

Linking to Custom Types of Requirements Documents

2 To register the custom link type ABC, type the following MATLAB
command:

rmi register rmicustabcinterface

This will cause the ABC file type to be added to the drop-down list of
document types in the Requirements dialog box.

3 Create a text file with the .abc extension, containing several
requirement items marked by the Requirement:: string, as described
above. For your convenience, an example of such a file is included
in the installation. It is named demo_req_1.abc, and is located in
matlabroot\toolbox\slvnv\rmidemos. The contents of this file is
displayed below.

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet
Desired Altitude - feet

Description:

When the autopilot is in altitude climb
control mode, the controller maintains a
constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

<END "Altitude Climb Control">

2-35

2 Managing Model Requirements

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <

30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

<END "Altitude Hold">

Requirement:: "Autopilot Disable"

Altitude hold control and altitude climb
control are disabled when autopilot enable
is false.

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

<END "Autopilot Disable">

2-36

Linking to Custom Types of Requirements Documents

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

<END "Glide Slope Armed">

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and
Distance < 10000

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target

2-37

2 Managing Model Requirements

altitude the actual target climb rate is the
negative of the user setting.

<END "Glide Slope Coupled">

4 Open the model my_sf_car.

5 Right-click the Engine block and, from the resulting pop-up menu, select
Requirements > Edit/Add Links.

The Requirements dialog box appears.

6 Click New to add a new default requirement. Note that ABC file type is
now available in the Document Type drop-down list, as shown.

7 Set Document Type to ABC file (for demonstration) and browse
to the demo_req_1.abc file, or to your own .abc requirements file that

2-38

Linking to Custom Types of Requirements Documents

you created in Step 3. Note that the browser shows only the files with
the .abc extension.

8 Define a particular location in the document. In this example, you can
either use a line number or a requirement name as the item identifier, so
the location delimiters in the rmicustabcinterface function are specified
as ’>@’. As a result of this parameter, the Location drop-down menu
contains these two items whenever the document type is set to ABC file, as
shown.

Creating a Document Index
The example file format clearly defines requirement items that are easily
listed. To generate a document index, set the ContentsFcn to a valid function.
The MATLAB code uses file I/O to read the contents into the MATLAB
variable. The Requirements Management Interface uses the regular

2-39

2 Managing Model Requirements

expression utility in MATLAB to extract a list of requirement items that it
returns.

The following code generates an index for the ABC files.

function [labels, depths, locations] = ContentsFcn(filePath)
% Read the entire M-file into a variable
fid = fopen(filePath,'r');
contents = char(fread(fid)');
fclose(fid);

% Find all the functions
fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list
items = [fList1{:}]';
items = sort(items);
items = strcat('@',items);

locations = [items];
labels = [items];
depths = [];

For example, for the demo_req_1.abc file discussed earlier in “Creating a
Custom Link Requirement Type” on page 2-31, this function generates the
document index as shown in the following illustration.

2-40

Linking to Custom Types of Requirements Documents

Navigating to Simulink from External Documents
The Requirements Management Interface includes several functions that
simplify creating navigation interfaces in external documents. The external
application that displays your document must support an application program
interface (API) for communicating with MATLAB.

Providing Unique Object Identifiers
Whenever you create a requirement link for an object in Simulink or
Stateflow, a globally unique identifier is created for that object. This identifier
is used to identify the object and will not change if the object is renamed or
moved or when requirement links are added or deleted. Although the unique
identifier is only used to resolve an object within a model, the identifier is
globally unique and should not collide with identifiers in other models unless
the two models derive from the same original model. Unique object identifiers
have formats like GIDa_cd14afcd_7640_4ff8_9ca6_14904bdf2f0f.

2-41

2 Managing Model Requirements

Using the rmiobjnavigate Utility
The rmiobjnavigate function performs the required actions to identify the
appropriate Simulink or Stateflow object, highlight that object, and bring the
appropriate editor window to the front of the screen. When you navigate to
Simulink from an external application, invoke this command. Internally this
function creates a table of all the unique object identifiers within a model,
which is used for efficient object lookup.

The first time you navigate to an item in a particular model, there may be a
slight delay while the internal navigation table is constructed. Subsequent
navigation should have minimal delay.

Determining the Navigation Command
Once you have created a requirement link for a Simulink or Stateflow object,
you can find the appropriate navigation command string using the rmi
function in MATLAB. The return value of the navCmd method is a string that
navigates to the correct object when evaluated in MATLAB:

cmdString = rmi('navCmd', block);

You need to send this exact string to MATLAB for evaluation as part of
navigating from the external application to Simulink.

Using the ActiveX Navigation Control
A special ActiveX control is included with Simulink Verification and
Validation and is used to enable linking to Simulink models from Microsoft
Word and Microsoft Excel documents. You can use this same control from any
other application that supports ActiveX within its documents.

The control is derived from a pushbutton and has the Simulink icon.
There are two instance properties that define how the control works. The
tooltipstring property is the string that is displayed in the ToolTip of the
control. The MLEvalCmd property is the string that is passed to MATLAB for
evaluation when the control is pushed.

Typical Code Sequence for Establishing Two-Way Links
When you create an interface to an external tool, the procedure for
establishing links can often be automated so that no dialog fields need to be

2-42

Linking to Custom Types of Requirements Documents

manually updated. This type of automation is part of the selection-based
linking that is implemented for certain built-in types, such as Microsoft Word
and Microsoft Excel.

In generic terms, use the following process:

1 Select an object in Simulink or Stateflow and an item in the external
document.

2 Invoke the link creation action either from a menu or command in
Simulink, or a similar mechanism in the external application.

3 Identify the document and current item using the scripting capability of the
external tool. Pass this information to MATLAB and create a requirement
link on the selected object using rmi('createempty') and rmi('cat').

4 Determine the MATLAB navigation command string that must be
embedded in the external tool using the navCmd method:

cmdString = rmi('navCmd',obj)

5 Create a navigation item in the external document using the scripting
capability of the external tool and set the MATLAB navigation command
string in the appropriate property.

You can use the code for selection-based linking to Word, Excel, and DOORS
as an example of this type of automation. The files are contained in
matlabroot\toolbox\slvnv\reqmgt\private:

selection_link_doors.m
selection_link_excel.m
selection_link_word.m

2-43

2 Managing Model Requirements

Viewing Objects with Requirement Links
After you have added requirements to blocks in a model, you can change
the view in the Model Explorer window to show only objects that have
requirements associated with them. In “Adding Requirement Links to an
Object” on page 2-8 and “Adding Requirement Links to Multiple Objects
Simultaneously” on page 2-17, you add requirements to the Engine, Engine
RPM, and transmission blocks in the model you save as my_sf_car. Use
the following procedure to highlight these objects in the Model Explorer and
Simulink:

1 Open the model my_sf_car.

2 In Simulink, from the View menu, select Model Explorer.

3 The model and its elements appear in the Model Explorer window as shown.

4 In the Model Explorer toolbar, select the Display Objects with Linked

Requirements tool .

2-44

Viewing Objects with Requirement Links

5 To see all objects, click the Display Objects with Linked Requirements tool
again to deselect it.

You can also highlight blocks of a Simulink model with associated
requirements in a Simulink model window as follows:

1 In the Model Explorer toolbar, select the Highlight Items with

Requirements in Model tool .

2-45

2 Managing Model Requirements

2 To drop the highlighting, click the Highlight Items with Requirements
in Model tool again to deselect it.

2-46

Generating a Requirements Report

Generating a Requirements Report
After you have added requirements to a model, you can generate a report on
all the requirements associated with the model and its blocks. In “Adding
Requirement Links to an Object” on page 2-8 and “Adding Requirement Links
to Multiple Objects Simultaneously” on page 2-17, you add requirements to
the Engine, Engine RPM, and transmission blocks in the model you save as
my_sf_car. Use the following procedure to generate a requirements report:

1 Open the model my_sf_car.

2 In Simulink, from the Tools menu, select Requirements > Generate
Report.

The Requirements Management Interface searches through all the blocks
and subsystems in the model for associated requirements, generates a
complete report in HTML format with the default name rmi.html, and
displays it in your system Web browser, as shown.

2-47

2 Managing Model Requirements

3 To save the report with a meaningful name, in the Web browser main menu
click File > Save As, type the desired filename, and click Save.

2-48

Displaying the System Requirements in a Diagram

Displaying the System Requirements in a Diagram
You can list all the requirements for a model or a subsystem directly on the
Simulink diagram. You do this by adding the System Requirements block from
the Simulink Verification and Validation library to the diagram. You can place
this block anywhere in a diagram. It is not connected to other Simulink blocks.

Once you place the System Requirements block in a Simulink diagram, it
automatically lists the requirements associated with the model or subsystem
depicted in the current diagram. It does not list requirements associated
with individual blocks in the diagram.

The following topics show you how use the System Requirements block:

• “Adding the System Requirements Block” on page 2-49 — Describes how
to display a listing of system requirements in a diagram by adding the
System Requirements block

• “Renaming the System Requirements Block” on page 2-52 — Describes how
to change the heading of the listing of system requirements in a diagram

• “Changing Fonts for the System Requirements Block” on page 2-53 —
Describes how to change the font size or style for the listing of system
requirements in a diagram

Adding the System Requirements Block
In “Adding Requirement Links to an Object” on page 2-8, you added
requirement links to the Engine block of the model my_sf_car. You can list
these requirements in the block diagram of the Engine subsystem as follows:

1 Open the model my_sf_car.

2 Double-click on the Engine block. The Engine subsystem diagram opens, as
shown.

2-49

2 Managing Model Requirements

3 Click the Library Browser tool .

The Simulink Library browser opens.

4 In the left pane of the Simulink Library browser, select Simulink
Verification and Validation.

The Simulink Verification and Validation library opens in the right pane of
the Simulink Library browser. It contains one block, System Requirements.

5 Select the System Requirements block in the right pane of the Simulink
Library browser and drag it to an empty space in the Engine diagram.

The block is automatically populated with the system requirements for the
Engine diagram, as shown.

2-50

Displaying the System Requirements in a Diagram

6 Each of the listed requirements is an active link to the actual requirements
document. For example, to access the document for the second requirement
link, double-click on Requirement 2.

The document requirements.doc opens in its editor, Microsoft Word,
scrolled to the highlighted first occurrence of the text “Secondary
Requirements,” as shown.

2-51

2 Managing Model Requirements

Once the System Requirements block is placed in a diagram, it automatically
updates the listing as you add, modify, or delete requirements for the model
or subsystem.

Note The System Requirements block automatically lists all the system
requirements for the current model or subsystem. You cannot have more than
one System Requirements block in a diagram.

Renaming the System Requirements Block
By default, the list of the system requirements in a diagram appears under a
heading System Requirements. You can change the heading by renaming the
System Requirements block in the diagram, as follows:

1 Right-click on the System Requirements block in the my_sf_car/Engine
diagram.

2 From the resulting pop-up menu, select Mask Parameters. The Block
Parameters dialog box opens, as shown.

3 Type Engine Requirements in the Block Title field and click OK.

The requirements heading in the diagram is updated as shown.

2-52

Displaying the System Requirements in a Diagram

Changing Fonts for the System Requirements Block
The System Requirements block is implemented using a set of empty
subsystems. Because of this, occasionally the appearance is not refreshed
correctly, for example, when you make a change to the font style or size. You
can easily fix this problem by double-clicking the top label for the block, which
causes the entire block display to refresh.

Use the following procedure to change the font used in the block.

1 Right-click on the System Requirements block in the my_sf_car/Engine
diagram.

2 From the resulting pop-up menu, select Format > Font. The Set Font
dialog box opens.

3 Under Size, select 14, then click OK. The block display partially refreshes,
as shown.

2-53

2 Managing Model Requirements

4 To refresh the entire block display, double-click the top label, System
Requirements. The block diagram now looks as shown below.

2-54

Including Requirements with Generated Code

Including Requirements with Generated Code
Once you finish simulating your model and verifying its performance against
the requirements, you might want to use it to generate code for an embedded
real-time application. Simulink includes the requirements that you assign to
Simulink blocks in generated code for Embedded Real-Time (ERT) targets of
Real-Time Workshop® Embedded Coder.

To specify that requirements be included in the generated code of an ERT
target, do the following:

1 Load the model.

2 In the Simulink window, from the Simulation menu item, select
Configuration Parameters.

3 In the Select pane of the Configuration Parameters dialog box, select the
Real-Time Workshop node.

The currently configured system target must be an ERT target, as shown.

2-55

2 Managing Model Requirements

4 In the Select pane, under Real-Time Workshop, select Comments.

5 In the Custom comments section on the right, select theRequirements
in block comments check box, as shown.

2-56

Including Requirements with Generated Code

Requirement descriptions are included with generated code in the following
locations.

Model Element Requirement Description Location

Model In the main header file <model>.h

Nonvirtual subsystems At the call site for the subsystem

Virtual subsystems At the call site of the closest nonvirtual parent
subsystem. If a virtual subsystem has no
nonvirtual parent, requirement descriptions are
located in the main header file for the model,
<model>.h.

Nonsubsystem blocks In the generated code for the block

2-57

2 Managing Model Requirements

2-58

3

Managing Model
Requirements with DOORS

The Requirements Management Interface for DOORS associates DOORS
requirements with model objects. To learn how to use these applications
together, see the following sections:

What Is the Requirements
Management Interface for DOORS?
(p. 3-2)

Shows how the Requirements
Management Interface associates
objects with DOORS requirements

Configuring the Requirements
Management Interface for DOORS
(p. 3-3)

Specifies additional files from
MATLAB that you need to copy into
your installation for DOORS

Starting the Requirements
Management Interface for DOORS
(p. 3-5)

Describes how to start the
Requirements Management
Interface for DOORS and create
projects

Linking Objects to DOORS
Requirements (p. 3-7)

Describes how to add two-way links
between Simulink or Stateflow
objects and DOORS requirements

Synchronizing DOORS with the
Simulink Model (p. 3-12)

Describes how to synchronize the
model and link synchronized objects
with DOORS requirements

Navigating Between Model Objects
and DOORS (p. 3-24)

Describes how to move between the
model and the DOORS synchronized
module, and how to view the nodes
in an object that have associated
requirements

3 Managing Model Requirements with DOORS

What Is the Requirements Management Interface for
DOORS?

DOORS is a requirements management application that captures, tracks, and
manages user requirements. The Requirements Management Interface for
DOORS is a special interface between your Simulink model and DOORS.

3-2

Configuring the Requirements Management Interface for DOORS

Configuring the Requirements Management Interface for
DOORS

DOORS is a requirements management application for capturing,
tracking, and managing requirements. If you plan to use DOORS with the
Requirements Management Interface (RMI) for DOORS, you must install
some additional files to establish communication between DOORS and the
Requirements Management Interface for DOORS:

Installing DOORS Before RMI
If DOORS is installed before you install the RMI and run the setup script,
as described in “Configuring the Requirements Management Interface” on
page 2-4, no additional installation for DOORS is necessary. The setup script
automatically copies all the necessary files to the correct location.

Installing DOORS After RMI
If you install DOORS after you install the RMI, run the setup script again,
as described in “Configuring the Requirements Management Interface” on
page 2-4.

Upgrading DOORS
If you upgrade the DOORS installation after installing the RMI, run the setup
script again, as described in “Configuring the Requirements Management
Interface” on page 2-4.

If you upgrade from DOORS 7.1 to DOORS 8.0, follow these additional steps:

1 Navigate to Telelogic\DOORS_8.0\lib\dxl\startupFiles.

2 Open the file copiedFromDoors7.dxl with a text editor.

3 Comment out the line:

#include <addins/dmi/dmi.inc>

It should now look like this:

3-3

3 Managing Model Requirements with DOORS

//#include <addins/dmi/dmi.inc>

4 Save and close the file.

5 Start DOORS and MATLAB.

6 Run the setup script.

Manual Installation for DOORS
Normally, the setup script automatically copies all the files to the correct
location. However, in some cases the script might fail because of file
permissions in your DOORS installation. If this happens, you have to
manually install additional files, as described in the following procedure:

1 If DOORS is running, close DOORS.

2 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors>\lib\dxl\addins directory:

addins.idx
addins.hlp

<doors> represents the top-level directory where DOORS is installed.
Replace any existing versions of the files if they have not been modified;
otherwise, merge their contents.

3 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors>\lib\dxl\addins\dmi directory.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl
selblk.dxl

Replace any existing versions of these files.

4 Open the file <doors>\lib\dxl\startup.dxl, and add the following
include statement in the user-defined files section:

#include <addins/dmi/dmi.inc>

3-4

Starting the Requirements Management Interface for DOORS

Starting the Requirements Management Interface for
DOORS

Use this procedure to start the Requirements Management Interface for
DOORS. Do this prior to synchronizing the model with DOORS and linking
objects to DOORS requirements.

1 Start MATLAB in DOS or UNIX with the following command:

\...\matlab.exe /automation

MATLAB starts up minimized with a default matlabroot\bin path. This
mode of operation is necessary to navigate between an object mapping
in DOORS and its source object in the Simulink model. If this type of
navigation is not needed, open MATLAB in default mode.

2 Start DOORS.

The DOORS Database window appears, as shown.

You must have a project open in DOORS in order to use the MATLAB
Requirements Management Interface. If you do not have a project to open,
create and open one as follows:

1 Right-click the DOORS Database node in the left pane and, from the
resulting menu, select New > Project.

3-5

3 Managing Model Requirements with DOORS

The New Project dialog box appears, as shown.

2 Enter the name Test Project and the description This is a test
project. and click OK.

The new project appears in the right pane of the dialog box, as shown.

3 In the right pane, double-click the project to open it. The project opens, as
shown.

3-6

Linking Objects to DOORS Requirements

Linking Objects to DOORS Requirements
The Requirements Management Interface for DOORS lets you add links to
DOORS requirements directly to the Simulink or Stateflow objects, without
having to synchronize the model and navigate to the surrogate DOORS
module. This linking mechanism is similar to selection-based linking to
Microsoft Word and Microsoft Excel documents, described in “Selection-Based
Linking” on page 2-20. It also creates two-way links by creating a special
navigation object in DOORS, which allows you to navigate from the DOORS
requirement to the associated object in the Simulink or Stateflow diagram.

The following topics describe how to link a Simulink or Stateflow object to a
DOORS requirement:

• “Creating a DOORS Requirement Object” on page 3-7 — If you are not
familiar with DOORS, use this procedure to create requirement items in a
formal module.

• “Linking a Simulink or Stateflow Object to a DOORS Requirement” on
page 3-9 — Use this procedure to link an object to a DOORS requirement.

Creating a DOORS Requirement Object
Use the following procedure to create a DOORS requirement object in a
formal module.

1 In the main DOORS window, from the File menu, select New > Formal
Module to create a new formal module.

The New Formal Module dialog box appears, as shown.

3-7

3 Managing Model Requirements with DOORS

2 In the Name text field, enter the name Requirements and click OK.

The new formal module Requirements appears listed in the DOORS main
window. A window for Requirements is already open, but not in focus.

3 In the main DOORS window, double-click the Requirements module to
bring it in focus.

4 In the formal module window Requirements, from the Insert menu select
Object.

A new object appears in the formal module, as shown.

��������	
�������������
��������

3-8

Linking Objects to DOORS Requirements

5 Right-click the object in the right pane and, from the resulting context
menu, select Properties.

6 In the resulting Object properties dialog box, enter the Heading
Transmission Requirements, some text for Object Text, and select OK.

You should now see an object similar to the following in the Requirements
formal module.

���	����������	
�������������
��������

Linking a Simulink or Stateflow Object to a DOORS
Requirement
In “Creating a DOORS Requirement Object” on page 3-7, you created a
Transmission Requirements object in the Requirements formal module in
DOORS. Now use the following procedure to link the transmission block in
the sf_car model to this DOORS requirement.

1 In the MATLAB Command Window, type sf_car at the MATLAB prompt
to open the demo model sf_car.mdl.

2 In the formal module window Requirements, select the Transmission
Requirement node in the left pane, as shown.

3-9

3 Managing Model Requirements with DOORS

3 In the Simulink diagram, right-click on the transmission block and, from
the resulting pop-up menu, select Requirements > Add link to current
DOORS object.

The Requirements Management Interface for DOORS adds the link to the
DOORS requirement object, as shown.

4 Save the DOORS module.

5 Save the Simulink model as sf_car_doors.mdl.

The Requirements Management Interface uses the DOORS absolute number
and the unique module number to identify items in DOORS. This ensures that
the correct item is identified even if the module is renamed or the items in
the module are rearranged.

3-10

Linking Objects to DOORS Requirements

You can also use the Requirements dialog box to create links to DOORS
objects. Set the Document type field to DOORS Item and click Browse. The
Requirements Management Interface opens the DOORS database. Browse to
the desired module and specify the DOORS item number.

3-11

3 Managing Model Requirements with DOORS

Synchronizing DOORS with the Simulink Model
This section shows you how to create the synchronized module and link
objects with DOORS requirements in the following topics:

• “Synchronizing a Model with DOORS” on page 3-13 — Describes why
synchronization is needed, when to synchronize, and how to synchronize

• “Linking Requirements to the DOORS Synchronized Module” on page 3-22
— Describes how to link synchronized objects with DOORS requirements

Keep in mind the following synchronization rules:

• Synchronization is optional

• You can create requirement links before or after you synchronize, in any
order

• The synchronized module captures requirement information from the
model into the DOORS database, enabling further analysis and reporting

The following diagram illustrates the synchronization process.

3-12

Synchronizing DOORS with the Simulink Model

Note The Requirements Management Interface and DOORS both use
the term object, but each uses the term differently. In the Requirements
Management Interface for DOORS, and in this document, the term object
refers to a Simulink model, a Simulink block, a Stateflow block, and elements
of a Stateflow diagram. In DOORS, object refers to each numbered element in
the synchronized formal module for the objects in a Simulink model. DOORS
assigns each of these objects a unique object identifier. In this document,
these objects are referred to as DOORS objects.

Synchronizing a Model with DOORS
In “Starting the Requirements Management Interface for DOORS” on page
3-5, you open MATLAB, open DOORS, and open a project in DOORS. Begin

3-13

3 Managing Model Requirements with DOORS

the process of mapping requirements in DOORS to a Simulink model by first
synchronizing the model with the open project in DOORS. Synchronization
maps a hierarchical representation of a Simulink model’s blocks and Stateflow
objects to a formal module in a DOORS project. Later, you use this formal
module to add requirements.

Use the following procedure to synchronize a Simulink model with DOORS:

1 In the MATLAB Command Window, type sf_car at the MATLAB prompt
to open the demo model sf_car.mdl.

2 In the Simulink model, from the View menu, select Model Explorer.

3 Select the Synchronize Requirements with DOORS tool in the Model
Explorer window. The DOORS settings dialog box opens, as shown.

3-14

Synchronizing DOORS with the Simulink Model

4 Click Synchronize.

Synchronizing creates and opens a DOORS formal module for the model,
which appears as shown.

Notice that by default the DOORS formal module contains only one
synchronized object, which corresponds to the top-level diagram. To include
all the model blocks in the DOORS formal module, use the following
procedure, “Customizing the Level of Synchronization Detail” on page 3-15.

Customizing the Level of Synchronization Detail
The DOORS surrogate module always contains the model objects that have
DOORS requirement links and objects that were previously synchronized.
You can choose a desired detail level to make the surrogate better reflect the

3-15

3 Managing Model Requirements with DOORS

model. Additional synchronization objects improve the surrogate detail at the
expense of slower synchronization.

To include all the model blocks in the DOORS formal module, use the
following procedure.

1 Open the sf_car model.

2 From the Tools menu in the Simulink window select Requirements >
Synchronize with DOORS. The DOORS settings dialog box opens, as
shown. Another way to access this dialog box is to select the Synchronize

Requirements with DOORS tool in the Model Explorer window.

3 From the drop-down list in the Additional synchronization objects
pane, select Complete All blocks, subsystems, states, and
transitions.

4 Click Synchronize. The DOORS formal module for the model appears as
shown.

3-16

Synchronizing DOORS with the Simulink Model

Notice the following:

• The formal module is named sf_car in the title bar, after the model.

• The left pane displays a node for each synchronized object. All nodes are
expanded and the pane is scrolled to the bottom.

• The right pane displays a DOORS object for each model object, which
consists of the model object title only. It is also scrolled to the bottom.

• Each DOORS object has a unique identifier displayed in the ID column.
For example, the identifier for the DOORS object for the Product block
turbine in the preceding figure is 83.

• Each DOORS object has a hierarchical identifier displayed in the Block
Name column, which represents its relationship to other objects in the
engine model. The hierarchical identifier of each block begins with 1,
the hierarchical identifier for the model sf_car that contains them.

• For each DOORS object, there is a Block Type description that
identifies each object as a particular block or a subsystem.

3-17

3 Managing Model Requirements with DOORS

• You can add additional information columns to the right pane with the
Insert Column tool in the DOORS toolbar.

5 In the Simulink model, right-click and drag a copy of the Scope block, as
shown.

�������	�������

6 Select the Synchronize Requirements with DOORS tool again.

The synchronized module is updated with the new block, as shown.

3-18

Synchronizing DOORS with the Simulink Model

�������	����������

Note The Requirements Management Interface for DOORS does not detect
model changes made after a synchronization. It is up to you to synchronize
a changed model with the DOORS formal module.

7 In the Simulink model, delete the added Scope block and resynchronize.

The deleted block appears at the bottom of the list of objects in the formal
module and its entry in the Block Deleted column is True. If you want,
you can delete this entry by right-clicking the line and selecting Delete.
Otherwise, the module records the former presence of the deleted block.

8 Before you close the DOORS project, save the synchronized module in
DOORS.

3-19

3 Managing Model Requirements with DOORS

Customizing the DOORS Synchronization Settings
The DOORS settings dialog box lets you control not only the level of
synchronization detail, but also the actions that the Requirements
Management Interface for DOORS performs upon synchronization.

1 From the Tools menu in the Simulink window select Requirements >
Synchronize with DOORS. The DOORS settings dialog box opens, as
shown. Another way to access this dialog box is to select the Synchronize

Requirements with DOORS tool in the Model Explorer window.

The DOORS surrogate module path field identifies the module within
the DOORS database. You can specify a module with either a relative
path (starting with ./) or a full path (starting with /). Relative paths are
appended to the current DOORS project. Absolute paths must specify a
project and a module name.

After you synchronize a model, the Requirements Management Interface
for DOORS automatically updates the DOORS surrogate module path
field with the actual full path. It also saves the unique module identifier
with the module, to identify when the surrogate is renamed.

If you select a new module path, or if the surrogate module is renamed,
the Resolve Surrogate Conflict dialog box appears when you click

3-20

Synchronizing DOORS with the Simulink Model

Synchronize, as shown below. It gives you the options to reuse
the previous module, to continue with the specified path, or to abort
synchronization.

2 Use the following options in the DOORS settings dialog box to customize
your synchronization settings:

• Copy DOORS surrogate item links to Simulink objects — If this
check box is selected, at the time of synchronization the Requirements
Management Interface for DOORS copies all the requirement links
created from the surrogate module items into the appropriate Simulink
model objects.

• Copy Simulink DOORS links to DOORS surrogate items — If this
check box is selected, at the time of synchronization the Requirements
Management Interface for DOORS copies all the requirement links
created directly from the Simulink model into the appropriate surrogate
module items.

Keeping both these check boxes selected ensures that your requirement
link information is completely synchronized.

• Additional synchronization objects — Lets you select the level
of synchronization detail, as described in “Customizing the Level of
Synchronization Detail” on page 3-15.

• Save DOORS surrogate module after synchronization — If this
check box is selected, the DOORS formal modules are automatically
saved upon synchronization. If you clear the check box, you will have to
manually save them.

• Save Simulink model after synchronization (recommended) —
If this check box is selected, the Simulink model is automatically saved
upon synchronization. It is recommended that you use this option.

3-21

3 Managing Model Requirements with DOORS

3 After you select the desired configuration, click Save Settings.

Linking Requirements to the DOORS Synchronized
Module
After you create or resynchronize a synchronized module, you can add
requirements for its objects in another DOORS formal module. Each
requirement is then linked to its DOORS object in the synchronized module.
This establishes recognizable requirements in the Requirements Management
Interface for DOORS.

In “Creating a DOORS Requirement Object” on page 3-7, you created a
Transmission Requirements object in the Requirements formal module
in DOORS.

Now use the following procedure to add this requirement to the synchronized
module you created for the sf_car model in “Synchronizing DOORS with
the Simulink Model” on page 3-12:

1 Open the Requirements formal module in DOORS.

2 In the DOORS main window, open the synchronized module sf_car and
scroll down to the transmission object.

3 Right-click the transmission object and select Link > Start Link from
the resulting context menus.

4 In the Requirements formal module window, right-click the Transmission
Requirements object and select Link > Make Link from Start from the
resulting context menus.

A link now exists between the transmission object in the synchronized
module and the Transmission Requirements object in the Requirements
module. The presence of the link is indicated by a right-facing arrow for the
transmission object in the synchronized module and a left-facing arrow in
the Transmission Requirements object in the Requirements module, as
shown.

3-22

Synchronizing DOORS with the Simulink Model

�
��
��������
�����������

The requirement you install in this section is an example of an official DOORS
requirement for the Requirements Management Interface for DOORS.
You can navigate between the object in the synchronized module and its
requirement in DOORS by right-clicking one of the arrows and selecting from
the resulting pop-up menu. You can also establish more links from the object
to other requirements. Later on, when you display Simulink objects with
DOORS requirements in “Navigating Between Model Objects and DOORS” on
page 3-24, these are the requirements that the Requirements Management
Interface for DOORS detects.

3-23

3 Managing Model Requirements with DOORS

Navigating Between Model Objects and DOORS
The following sections explain how to create views that show which model
objects have requirements. They also describe how to navigate between
Simulink or Stateflow objects and the associated requirements in DOORS, or
between model elements and the synchronized DOORS formal module.

• “Viewing Model Elements with Requirements” on page 3-24 — Modify the
view of a Simulink model and identify the subsystems and blocks that
have associated requirements

• “Navigating from Simulink to DOORS” on page 3-26 — Navigate to a
requirement in DOORS from its object in Simulink or the Model Explorer

• “Navigating from DOORS to Simulink” on page 3-28 — Navigate from a
requirement in DOORS to its object in Simulink

Viewing Model Elements with Requirements
It is sometimes helpful to distinguish model objects with requirements
from those without requirements in a single glance. The Requirements
Management Interface for DOORS lets you see model elements with
requirements linked to the synchronized module both in Simulink and in the
Model Explorer.

Use the following procedure to display only those model elements with
requirements:

1 In the Simulink model, from the View menu, select Model Explorer.

The Model Explorer window appears with the model highlighted in the
Model Hierarchy pane, as shown.

3-24

Navigating Between Model Objects and DOORS

2 Select the Display Objects with Linked Requirements tool in the Model
Explorer toolbar.

3-25

3 Managing Model Requirements with DOORS

The Model Explorer displays only the transmission object, which you
added requirements to in “Linking Objects to DOORS Requirements” on
page 3-7.

3 Select the Highlight Items with Requirements on Model tool in the
Model Explorer toolbar.

The transmission block in the Simulink model becomes highlighted, as
shown.

Navigating from Simulink to DOORS
If you create requirement links directly from the Simulink or Stateflow object,
you can navigate directly from the object to the DOORS requirement. In
“Linking Objects to DOORS Requirements” on page 3-7, you create a link
from the transmission block in Simulink to the Transmission Requirements
DOORS object.

Use the following procedure to navigate from the transmission block in
Simulink to its associated requirement in DOORS:

3-26

Navigating Between Model Objects and DOORS

1 In Simulink, open the model sf_car_doors.

2 Right-click on the transmission block and, from the resulting pop-up menu,
select Requirements > 1. “Transmission Requirements” as shown.

The Requirements formal module window opens scrolled to the
Transmission Requirements link.

Navigating Through the Synchronized Module
If you use the synchronized module to create requirement links to DOORS,
as described in “Linking Requirements to the DOORS Synchronized Module”
on page 3-22, then you can navigate between Simulink objects and DOORS
requirements by using the synchronized module as an intermediary. You first
navigate to the unique object in the synchronized module from its object in
Simulink or the Model Explorer. From the synchronized module, you then
access requirements for each object through the linking process in DOORS.

Use the following procedure to navigate from a Simulink object to the object
mapped in the synchronized module:

3-27

3 Managing Model Requirements with DOORS

1 In Simulink, right-click a block with requirements.

A pop-up menu appears.

2 In the pop-up menu, select Requirements > DOORS Surrogate Item.

If the synchronized module is closed, it opens and the mapped object is
highlighted. If the synchronized module is already open, only the mapped
object is highlighted.

3 Access individual requirements in the synchronized module.

You can access individual requirements by right-clicking the arrows
that appear in the Block Name column for each mapped object with
requirements and making a requirement selection.

Navigating from DOORS to Simulink
If you create two-way requirement links directly from the Simulink or
Stateflow object, you can navigate from the DOORS requirement directly to
the associated object in Simulink or Stateflow. In “Linking Objects to DOORS
Requirements” on page 3-7, you create a link from the transmission block in
Simulink to the Transmission Requirements DOORS object.

Use the following procedure to navigate from the Transmission Requirements
DOORS object to the transmission block in Simulink:

1 In DOORS, open the formal module window Requirements.

2 Select the Simulink Reference sub-node of the Transmission Requirements
node in the left pane, as shown.

3-28

Navigating Between Model Objects and DOORS

3 From the MATLAB menu in the formal module window Requirements,
select Select item.

The transmission block in the Simulink diagram is highlighted, as shown.

3-29

3 Managing Model Requirements with DOORS

Navigating Through the Synchronized Module
In DOORS, you can navigate from a requirement in a formal module to its
mapped object in the synchronized module through the left-facing arrows
in the Block Name column for each requirement. This brings focus to the
synchronized module with the owning object selected.

You can navigate from an object in the synchronized module to its Simulink
object as follows:

1 In the DOORS synchronized module, click an object in either the left or
right pane to select it.

2 From the MATLAB menu, choose Select item.

The object opens in its native diagram as follows:

• For a Simulink object, the subsystem containing the selected object
opens in Simulink with that block or subsystem selected in the model.
All parent Simulink blocks are selected as well, so that you can reach the
object from any higher-level object.

• For a Stateflow object, the diagram containing the selected object opens
in Stateflow with the object highlighted.

Note Although the MATLAB menu and Select item feature appear in
all DOORS formal modules, you can only use them in a synchronized
formal module.

If the DOORS Block Deleted status for the object is True, you cannot
navigate to the object.

3-30

4

Managing Model
Verification Blocks

You use Model Verification blocks throughout your model to monitor
individual signals relative to limits that you impose on them. Use Model
Verification blocks in conjunction with the Verification Manager tool in the
Signal Builder block to carefully construct simulation tests for your model
from a single location.

Using Model Verification Blocks
(p. 4-2)

Using Model Verification blocks in
Simulink to monitor model signals
against a specified limit

Using the Verification Manager
(p. 4-5)

Managing the Model Verification
blocks in your models with the
Verification Manager

Managing Verification Requirements
(p. 4-18)

Linking requirements documents
to test groups and their Model
Verification block schedule in the
Verification Manager

4 Managing Model Verification Blocks

Using Model Verification Blocks
You use Model Verification blocks throughout your model to monitor model
signals. You can set a verification block to assert when its signal leaves the
specified limit or range. During simulation, when the signal crosses the limit,
the verification block can

• Stop simulation and bring immediate focus to its part of the model

• Report the limit encounter with a logical signal output of its own, which can
be true if the limit is not encountered and false if the limit is encountered

To see a complete list of all Model Verification blocks and references for
each, see the “Model Verification” category in the Simulink Block Reference
documentation.

In the following example, a Check Static Lower Bound verification block is
used to stop simulation when a signal from a Sine Wave block crosses its
lower bound limit.

1 Attach a Check Static Lower Bound verification block to the signal from a
Sine Wave block, as shown in the following schematic.

2 Set the model to run for 2 seconds while the Sine Wave block outputs a
signal with an amplitude of 1 and a frequency of pi radians per second.

3 Open the Check Static Lower Bound block and set the parameters as
follows:

4-2

Using Model Verification Blocks

A verification block is enabled for an assertion when the Enable assertion
checkbox is selected (this is the default setting). According to the preceding
property settings, the Check Static Lower Bound block is set to detect a
signal value of -0.8 or lower. If this signal is detected, simulation is stopped.

4 Run the simulation.

The model stops simulating after 1.295 seconds, when the output is -0.8,
as shown. This brings focus to the asserting verification block, which is
highlighted.

4-3

4 Managing Model Verification Blocks

The stop in simulation is also accompanied by the following status
diagnostic message.

5 You can disable the block from asserting its limit by clearing the Enable
assertion checkbox, which has the following effect on the block’s
appearance in the model.

4-4

Using the Verification Manager

Using the Verification Manager
You can manage the Model Verification blocks in your models from a central
location with the Verification Manager tool of the Signal Builder block. Use
the following topics to learn how to manage Model Verification blocks in your
Simulink models:

• “Opening the Verification Manager” on page 4-5

• “Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-10

• “Using Enabling and Disabling Tools in the Verification Manager” on page
4-14

Opening the Verification Manager
In this topic you create a model that you use to examine the Verification
Manager in Simulink in the following steps:

1 Create the following example model in Simulink.

4-5

4 Managing Model Verification Blocks

Typically, a Signal Builder block provides test signals for an entire model
from one location. The example model contains a Signal Builder block
feeding five test signals to Model Verification blocks. Signals 1 through 4
are sent directly to Check Static Upper Bound Model Verification blocks.
The fifth signal is sent to a subsystem that contains a Check Static Upper
Bound verification block.

Each Check Static Upper Bound verification block is set to assert for an
upper bound of 1 (property Upper bound = 1). Blocks 1, 2, 3, and 5 appear
crossed out because they are disabled (property Enable assert is cleared).
Block 4 is enabled (property Enable assert is checked).

2 Double-click the Signal Builder block in the preceding model to open its
Signal Builder dialog box.

4-6

Using the Verification Manager

����������
��
�������� �����������	�
������

����

The Signal Builder dialog box displays tabbed pages for three groups of
signal values. Each group contains independent values for all five signals.
However, only a subset of the signals is displayed for each group. For
example, group1 displays signals 1 and 2. For more information on the
Signal Builder block, see “Working with Signal Groups” in the Simulink
documentation.

3 In the Signal Builder dialog toolbar, select the Show Verification Settings

tool .

The Verification block settings pane and the Requirements pane
appear as shown.

4-7

4 Managing Model Verification Blocks

������	�
��������
���������
������

By default, the Verification block settings pane lists all Model
Verification blocks for the model, grouped by subsystem. The
Requirements pane lists the requirements document links for the current
signal group. See “Managing Verification Requirements” on page 4-18 for
details on adding requirement document links in the Signal Builder dialog
box. For now, delete the Requirements pane in the next step.

4 Just above the Verification block settings pane, select to close the
Requirements pane.

4-8

Using the Verification Manager

The example Verification block settings pane displays five Model
Verification blocks. Four are in the top level of the model, and one is in a
subsystem.

5 Select the List Enabled Verifications tool in the Verification block
settings toolbar.

The Verification block settings pane now shows only the enabled Model
Verification blocks for the current group, as shown.

4-9

4 Managing Model Verification Blocks

6 Select the Show Verification Block Hierarchy tool to list all Model
Verification blocks for the current group again.

Enabling and Disabling Model Verification Blocks
with the Verification Manager
In this section you use the Verification Manager to selectively enable and
disable Model Verification blocks in group tests. In “Opening the Verification
Manager” on page 4-5, you open the Verification Manager in the Signal
Builder, as shown.

4-10

Using the Verification Manager

The Verification block settings pane in the preceding example lists
the Model Verification blocks in the model. Each verification block has a
preceding status node that indicates whether its assertion is enabled or
disabled and whether that setting applies universally or to the active group.
The preceding status node can be one of the following.

Node Status

Verification block is disabled for this group. Click to enable
for current group.

Verification block is enabled for the current group. Click
to disable for current group.

Verification block is enabled for all test groups.

4-11

4 Managing Model Verification Blocks

Use the Verification Manager to enable or disable model verification blocks in
the test_signals model you created in “Opening the Verification Manager”
on page 4-5, as follows:

1 In the Verification Manager, click the empty check box next to the Check
Static Upper Bound 2 node to enable it for the current group (group1).

Enabling a disabled block in the Verification block settings pane leads
to the following change in block appearance in the model.

 ����������
������������	�����
�������!������"

������	�
����#�������$�������

Because it is enabled in the current group, the Check Static Upper Bound 2
block gains an Override label and loses its cross-out. The meaning behind
the change in appearance becomes clearer when another group is selected.

2 In the Signal Builder dialog box, select the group2 tab and click the empty
check box next to the Check Static Upper Bound 3 block to enable it for
the current group (group2).

4-12

Using the Verification Manager

 ����������
������������	�����
�������!������"

������	�
����#�������$�������

The Check Static Upper Bound 3 block loses its cross to indicate that it is
enabled for the current group. However, Check Static Upper Bound 2 gains
a cross because it is enabled in another group, but not this one.

The change in appearance of the Check Static Upper Bound blocks in the
preceding steps is exemplary of the change in appearance of every other Model
Verification block except the Assert block. The change in appearance of the
Assert block is summarized in the following table:

Assert
Block Description

Enabled for all groups

Disabled in current group

Enabled in current group

4-13

4 Managing Model Verification Blocks

Using Enabling and Disabling Tools in the Verification
Manager
If you have many verification blocks, it is tedious to enable and disable blocks
individually. For this reason, the Verification Manager lets you enable and
disable blocks through selections from a context menu. These selections vary
with the node as follows:

Node Context Menu Selections

• Contents enable for all groups

• Contents enable by group

• Contents group enable

• Contents group disable

• Block enable by group

• Block enable for all groups

• Block group enable

• Block enable for all groups

• Block group disable

As an example, assume that the following groups are defined in the
Verification Manager for a model with five Model Verification blocks.

1 Right-click the test_signals node and select Contents enable for all
groups.

4-14

Using the Verification Manager

Applying the Contents enable for all groups selection to the model node
enables all contained Model Verification blocks, for all test groups, in all
contained subsystems.

2 Right-click test_signals and select Contents enable by group.

Applying the Contents enable by group selection to the model node
restores the previous individually enabled/disabled settings for each block
in each group.

3 Right-click test_signals and select Contents group enable.

Applying Contents Group enable to the test_signals model node in
group1 individually enables all contained blocks for group1, but leaves
the other groups untouched.

4 Right-click test_signals and select Contents group disable.

4-15

4 Managing Model Verification Blocks

Applying Contents group disable to the test_signals model node in
group1 individually disables all contained blocks for group1, but leaves
the other groups untouched.

5 Right-click Check Static Upper Bound 1 and select Block enable for
all groups.

Applying Block enable for all groups to the individual group1 block
node for Check Static Upper Bound 1 in group1 enables this block for
all groups.

6 Right-click Check Static Upper Bound 1 and select Block enable by
group.

Applying Block enable by group to the individual group1 block node
for Check Static Upper Bound 1 in group1 restores the previous
individually enabled/disabled state to this block for all groups. This lets
you enable or disable this node individually for each group.

4-16

Using the Verification Manager

7 Right-click Check Static Upper Bound 1 and select Block group
enable.

Applying Block group enable to the individual group1 block node for
Check Static Upper Bound 1 in group1 enables this block for this group
only. This is equivalent to selecting the empty check box in group1 for
this node.

8 Right-click Check Static Upper Bound 1 and select Block group
disable.

Applying Block group disable to the individual block node for Check
Static Upper Bound 1 in group1 disables this block for this group only.
This is equivalent to clearing the check box for this node.

4-17

4 Managing Model Verification Blocks

Managing Verification Requirements
In “Using the Verification Manager” on page 4-5, you learn how to use the
Verification Manager to manage Model Verification blocks along with signal
group tests in a Simulink model. The combination of test groups and their
schedules of enabled and disabled Model Verification blocks is used to verify
the correct behavior for your Simulink model. In this section you learn how to
link the requirements to this combination that specify correct behavior.

You can link requirements documents to individual verification blocks just as
you can for any Simulink block. See “Adding Requirement Links to an Object”
on page 2-8 for details on linking requirements documents to individual
Simulink blocks.

You can link requirements documents to test groups and their scheduled
Model Verification blocks through the Requirements pane of the Verification
Manager in the Signal Builder. By default, when you display the Verification
Manager in the Signal Builder window, the Requirements pane appears,
as shown.

4-18

Managing Verification Requirements

���������
�
�����

1 Right-click anywhere in the Requirements pane.

A pop-up menu appears.

2 From the pop-up menu, select Edit/Add Links.

The Requirements dialog box appears, as shown.

4-19

4 Managing Model Verification Blocks

You can also access the Requirements dialog box for a Signal Builder
block by right-clicking it in the Simulink model and selecting Edit/Add
Requirements.

3 Add links to requirements documents as described in steps 4 through 9 of
“Adding Requirement Links to an Object” on page 2-8.

The descriptions for the links that you add appear in the Requirements
pane, as shown.

4-20

Managing Verification Requirements

��������������
�

4 Right-click a requirement link and select View to view the requirements
document in its native editor.

5 Right-click a requirement link and select Delete to delete it.

4-21

4 Managing Model Verification Blocks

4-22

5

Using Model Coverage

Model coverage helps you to validate your model tests by measuring how
thoroughly the model objects are tested. The following sections describe tools
in Simulink Verification and Validation that measure and display model
coverage for the model.

Introduction to Model Coverage
(p. 5-3)

Introduces you to the concept of
model coverage and how it measures
the effectiveness of your model
during testing

Using Model Coverage (p. 5-8) Shows you how to use model
coverage and the tests to determine
the effectiveness of your model
during testing

Specifying Model Coverage
Reporting Options (p. 5-11)

Shows you how to select the
model coverage measurements and
reports that are performed during
simulation

Understanding Model Coverage
Reports (p. 5-20)

Shows and describes the different
parts of a basic model coverage
report

N-Dimensional Lookup Table Report
(p. 5-26)

Describes the interactive chart that
summarizes the extent to which
elements of a Lookup Table are
accessed

Signal Range Analysis Report
(p. 5-32)

Lists the maximum and minimum
signal values at each block in the
model measured during simulation

5 Using Model Coverage

Colored Simulink Diagram Coverage
Display (p. 5-35)

Shows you how to use the option
to display coverage of a model by
coloring its elements

Using Model Coverage Commands
(p. 5-40)

Shows you how to perform and
report model coverage tests during
simulation with MATLAB commands

Model Coverage for Embedded
MATLAB Function Blocks (p. 5-46)

How to use model coverage for
Embedded MATLAB Function
blocks and interpret the results

5-2

Introduction to Model Coverage

Introduction to Model Coverage
Model coverage determines the extent to which a model test case exercises
simulation pathways through a model. The percentage of pathways that a
test case exercises is called its model coverage. Model coverage is a measure
of how thoroughly a test tests a model. Model coverage therefore helps you
to validate your model tests.

How Model Coverage Works
Model coverage works by analyzing the execution of blocks that directly or
indirectly determine simulation pathways through your model. If a model
includes Stateflow charts, the tool also analyzes the states and transitions of
those charts. During a simulation run, the tool records the behavior of the
covered blocks, states, and transitions. At the end of the simulation, the tool
reports the extent to which the run exercised potential simulation pathways
through each covered block.

See “Understanding Model Coverage Reports” on page 5-20 for an example of
a model coverage report along with descriptions of the coverages it contains.
Before you do, you might need to review the types of coverages that model
coverage performs in “Types of Model Coverage” on page 5-3.

Types of Model Coverage
The tool performs several types of coverage analysis, depending on the
coverage options you select.

• “Cyclomatic Complexity” on page 5-3

• “Decision Coverage (DC)” on page 5-4

• “Condition Coverage (CC)” on page 5-4

• “Modified Condition/Decision Coverage (MC/DC)” on page 5-4

• “Lookup Table Coverage (LUT)” on page 5-5

Cyclomatic Complexity
Cyclomatic complexity is a measure of the structural complexity of a model. It
approximates the McCabe complexity measure for code generated from the

5-3

5 Using Model Coverage

model. In general, the McCabe complexity measure is slightly higher because
of error checks that the model coverage analysis does not consider.

Model coverage uses the following formula to compute the cyclomatic
complexity of an object (such as a block, chart, or state):

In this formula, N is the number of decision points that the object represents
and on is the number of outcomes for the nth decision point. The tool adds 1
to the complexity number computed by this formula for atomic subsystems
and Stateflow charts.

Decision Coverage (DC)
Decision coverage examines items that represent decision points in a model,
such as a Switch block or Stateflow states. For each item, decision coverage
determines the percentage of the total number of simulation paths through
the item that the simulation actually traversed.

Condition Coverage (CC)
Condition coverage examines blocks that output the logical combination of
their inputs (for example, the Logic block), and Stateflow transitions. A test
case achieves full coverage if it causes each input to each instance of a logic
block in the model and each condition on a transition to be true at least once
during the simulation and false at least once during the simulation. Condition
coverage analysis reports for each block in the model whether the test case
fully covered the block.

Modified Condition/Decision Coverage (MC/DC)
Modified condition/decision coverage examines blocks that output the
logical combination of their inputs (for example, the Logic block), and
Stateflow transitions to determine the extent to which the test case tests
the independence of logical block inputs and transition conditions. A test
case achieves full coverage for a block if, for every input, there is a pair of

5-4

Introduction to Model Coverage

simulation times when changing that input alone causes a change in the
block’s output. A test case achieves full coverage for a transition if, for each
condition on the transition, there is at least one time when a change in the
condition triggers the transition.

Lookup Table Coverage (LUT)
Lookup table coverage examines blocks, such as the 1D Lookup block, that
output the result of looking up one or more inputs in a table of inputs
and outputs, interpolating between or extrapolating from table entries as
necessary. Lookup table coverage records the frequency that table lookups use
each interpolation interval. A test case achieves full coverage if it executes
each interpolation and extrapolation interval at least once. For each LUT
block in the model, the coverage report displays a colored map of the lookup
table indicating where each interpolation was performed.

Blocks That Receive Model Coverage
The following table lists the Simulink blocks analyzed by the tool and the
kind of coverage analysis performed for each block.

Block Decision Condition MC/DC LUT

1D Lookup •

2D Lookup •

ND Lookup •

ND
Interpolation
using
Prelookup

•

ND Direct
Lookup

•

Abs •

Combin.
Logic

• •

5-5

5 Using Model Coverage

Block Decision Condition MC/DC LUT

Discrete-Time
Integrator
(when
saturation
limits are
enabled)

•

Embedded
MATLAB
Function

• • •

Fcn (Boolean
operators
only)

•

For •

If •

Logic • •

MinMax •

Multiport
Switch

•

Rate Limiter •

(Relative to
slew rates)

Relay •

Saturation •

Stateflow
(see note
below)

• • •

Subsystem • • •

Switch •

SwitchCase •

While •

5-6

Introduction to Model Coverage

Note Model coverage provides decision coverage for Stateflow states, events,
and state temporal logic decisions. It also provides decision, condition, and
MCDC coverage for Stateflow transitions. See the section “Understanding
Model Coverage for Stateflow Charts” in your Stateflow documentation for
details on the model coverage of Stateflow charts.

5-7

5 Using Model Coverage

Using Model Coverage
To develop effective tests with model coverage,

1 Develop one or more test cases for your model (see “Creating and Running
Test Cases” on page 5-8).

2 Run the test cases to verify that the model behavior is correct.

3 Analyze the coverage reports produced by Simulink.

4 Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases that cover areas not covered
by the current set of test cases.

5 Repeat the preceding steps until you are satisfied with the coverage of
your test set.

Note Simulink comes with an online demonstration of the use of model
coverage to validate model tests. To run the demo, enter simcovdemo at the
MATLAB command prompt.

Creating and Running Test Cases
Model coverage provides two MATLAB commands, cvtest and cvsim, for
creating and running test cases. The cvtest command creates test cases to be
run by the cvsim command (see “Creating Tests with cvtest” on page 5-40 and
“Running Tests with cvsim” on page 5-42).

You can also run the coverage tool interactively as follows:

1 From the Simulink Tools menu, select Coverage Settings.

Simulink displays the Coverage Settings dialog box, as shown.

5-8

Using Model Coverage

The Coverage Settings dialog box has four tabs. The Coverage tab is
displayed by default.

2 Select Enable Coverage Reporting.

By default, this setting is disabled. When you select it, the Browse button
for the Coverage Instrumentation Path is enabled along with the check
boxes of the Coverage metrics section, as shown.

5-9

5 Using Model Coverage

Selecting Enable Coverage Reporting also enables fields on the other
tabs of the Coverage Settings dialog box.

3 Select the coverages you want to appear in the coverage report.

For a complete inventory of coverage selections in all four tabs of the
Coverage Settings dialog box, see “Specifying Model Coverage Reporting
Options” on page 5-11.

4 Select OK to close the dialog box.

5 Select Start from the Simulation menu or the Start button on the
Simulink toolbar to start simulation of the model.

By default, Simulink saves coverage data for the current run in
the workspace object covdata and cumulative coverage data in
covCumulativeData. This data appears in an HTML report that is
displayed automatically at the end of simulation.

Note You cannot run simulations with both model coverage reporting and
acceleration options enabled. Simulink disables model coverage reporting if
the accelerator is enabled.

Block reduction optimization and conditional branch input optimization
are disabled when you perform coverage analysis because they interfere
with coverage recording.

5-10

Specifying Model Coverage Reporting Options

Specifying Model Coverage Reporting Options
A large part of using model coverage is specifying model coverage reporting
options in the Coverage Settings dialog box. You open this dialog from the
Tools menu of a Simulink window by selecting Coverage Settings. The
Coverage Settings dialog box appears with its Coverage tab in focus, as
shown.

The following topics describe the settings for each tab of the Coverage Settings
dialog box:

• “Coverage Tab” on page 5-11

• “Results Tab” on page 5-13

• “Report Tab” on page 5-14

• “Options Tab” on page 5-18

Coverage Tab
You select the model coverages calculated during simulation in the fields of
the Coverage tab of the Coverage Settings dialog box.

5-11

5 Using Model Coverage

Enable Coverage Reporting
Causes Simulink to gather and report the specified model coverages during
simulation. When you select the Enable Coverage Reporting field, all
other fields in the Coverage page of the Coverage Settings dialog box are
enabled, as shown.

Coverage Instrumentation Path
Specifies path of the subsystem for which Simulink gathers and reports
coverage data. By default, Simulink generates coverage data for the entire
model.

To restrict coverage reporting to a particular subsystem,

1 In the Coverage page of the Coverage Settings dialog box, click Browse.

Simulink displays a System Selector dialog box.

5-12

Specifying Model Coverage Reporting Options

2 Select the subsystem for which you want coverage reporting to be enabled
and click OK to close the dialog box.

Coverage Metrics
Select the types of test case coverage analysis that you want the tool to
perform. See “Types of Model Coverage” on page 5-3 for more information.

Results Tab
You select the destination of model coverage results from model coverage in
the Results page of the Coverage Settings dialog box.

5-13

5 Using Model Coverage

Save Cumulative Results in Workspace Variable
Causes model coverage to accumulate and save the results of successive
simulations in the workspace variable specified in the cvdata object name
field below. The coverage running total in the workspace variable is updated
with new results at the end of each simulation.

Save Last Run in Workspace Variable
Causes model coverage to save the results of the last simulation run in the
workspace variable specified in the cvdata object name field below.

Increment Variable Name with Each Simulation
Causes Simulink to increment the name of the coverage data object variable
used to save the last run with each simulation. This prevents the current
simulation run from overwriting the results of the previous run.

Update Results on Pause
When you pause during simulation the first time, causes the HTML model
coverage report to appear with model coverage results recorded up to the
pause point. When you resume simulation and later pause or stop simulation,
the model coverage report reappears in updated form with coverage results
up to the current pause or stop time.

Display Coverage Results Using Model Coloring
After simulation, causes coloring of Simulink blocks according to their level
of model coverage. Blocks highlighted in light green received full coverage
during testing. Blocks highlighted in light red received incomplete coverage.
In addition, model coverage results for each block receiving it is available in
context-sensitive form. See “Colored Simulink Diagram Coverage Display” on
page 5-35 for a complete description.

Report Tab
You select the model coverage test sessions (runs) reported by model coverage
in the Report page of the Coverage Settings dialog box.

5-14

Specifying Model Coverage Reporting Options

Generate HTML Report
Causes Simulink to create an HTML report containing the coverage data.
Simulink displays the report in the MATLAB Help browser at the end of the
simulation. Click the Settings button to select various reporting options
(see “Settings” on page 5-15).

Settings
The HTML Settings dialog box allows you to choose various model coverage
report options. To display the dialog box, click Settings on the Report page
of the Coverage Settings dialog box. The HTML Settings dialog box appears.

5-15

5 Using Model Coverage

Include each test in the model summary. When this option is selected,
the model hierarchy table at the top of the HTML report includes columns
listing the coverage metrics for each test. When this option is not selected, the
model summary reports only the total coverage.

Produce bar graphs in the model summary. Causes the model summary
to include a bar graph for each coverage result. The bar graphs provide a
visual representation of the coverage.

Use two color bar graphs (red, blue). Causes the report to use red and
blue bar graphs instead of black and white. The color graphs might not print
well in black and white.

Display hit/count ratio in the model summary. Reports coverage
numbers as both a percentage and a ratio, e.g., 67% (8/12).

Do not report fully covered model objects. Causes the coverage report
to include only model objects that the simulation does not cover fully. This
option is useful when you are developing tests, because it reduces the size of
the generated reports.

Include cyclomatic complexity numbers in summary. Includes the
cyclomatic complexity (see “Types of Model Coverage” on page 5-3) of the
model and its top-level subsystems and charts in the report summary. A
cyclomatic complexity number shown in boldface indicates that the analysis
considered the subsystem itself to be an object when computing its complexity.
This occurs for atomic and conditionally executed subsystems as well as
Stateflow blocks.

Include cyclomatic complexity numbers in block details. Includes the
cyclomatic complexity metric in the block details section of the report.

Cumulative Runs
Display the coverage results from successive simulations in the report.

Whenever the check box Save cumulative results in workspace variable
in the Results page is selected, a coverage running total is updated with new
results at the end of each simulation. In a cumulative coverage report the
results in the rightmost column reflect that running total value. The report is

5-16

Specifying Model Coverage Reporting Options

organized so that you can easily compare the additional coverage from the
most recent run with the coverage from all prior runs in the session.

You can make cumulative coverage results persist between MATLAB sessions
by using cvsave to save results to a file at the end of the session and cvload
to load the results at the beginning of the session. Note that the cvload
parameter RESTORETOTAL must be 1 in order to restore cumulative results.

When you save the coverage results to a file using cvsave and a model name
argument, the file also contains the cumulative running total. When you load
that file back into the coverage tool using cvload, you can select whether you
want to restore the running total from the file.

When you restore a running total from saved data, the saved results are
reflected in the next cumulative report that is generated. If a running
total already exists when you restore a saved value, the existing value is
overwritten.

Whenever you report on more than a single simulation, the coverage displayed
for truth tables and lookup-table maps is based on the total coverage of all
the reported runs. In the case of a cumulative report, this includes all the
simulations where cumulative results were stored.

Calculating cumulative coverage results is also possible at the command line
via the + operator. The following script demonstrates this usage:

covdata1 = cvsim(test1);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata + covdata2);

Last Run
Display only the results of the most recent simulation run in the report.

Additional Data to Include in Report
Lets you specify names of coverage data from previous runs to include in the
current report along with the current coverage data. Each entry causes a new
set of columns to appear in the report.

5-17

5 Using Model Coverage

Options Tab
You select important options for model coverage reports in the Options page
of the Coverage Settings dialog box.

Treat Simulink Logic Blocks as Short-Circuited
Applies only to condition and MC/DC coverage. If enabled, coverage analysis
treats Simulink logic blocks as though they short-circuit their input. In other
words, Simulink treats such a block as if the block ignores remaining inputs if
the previous inputs alone determine the block’s output. For example, if the
first input to an And block is false, MC/DC coverage analysis ignores the
values of the other inputs in determining MC/DC coverage for a test case.

You should select this option if you plan to generate code from a model and
want the MC/DC coverage analysis to approximate the degree of coverage
that your test cases would achieve for the generated code (most high-level
languages short-circuit logic expressions).

Note A test case that does not achieve full MC/DC coverage for
non-short-circuited logic expressions might achieve full coverage for
short-circuited expressions.

5-18

Specifying Model Coverage Reporting Options

Warn When Unsupported Blocks Exist in a Model
Select this option if you want the tool to warn you at the end of the simulation
if the model contains blocks that require coverage analysis but are not
currently covered by the tool.

Disable Coverage for Blocks Used in Assertion Checks
Disable coverage of blocks from Simulink’s Model Verification library
(see the “Model Verification” category in the Simulink Block Reference
documentation).

5-19

5 Using Model Coverage

Understanding Model Coverage Reports
The coverage report generated by model coverage contains the basic reports
described in the following topics:

• “Summary Report Section” on page 5-20

• “Details Report Section” on page 5-21

• “Decisions Analyzed Table” on page 5-23

• “Conditions Analyzed Table” on page 5-23

• “MC/DC Analysis Table” on page 5-24

For an understanding of model coverage reports for Stateflow diagrams and
their objects, see “Understanding Model Coverage for Stateflow Charts” in
Stateflow documentation.

Summary Report Section
The coverage summary section has two subsections: Tests and Summary.

5-20

Understanding Model Coverage Reports

The Tests section lists the simulation start and stop time of each test case and
any setup commands that preceded the simulation. The heading for each test
case includes the test case label, for example “Test throttle,” specified using
the cvtest command.

The Summary section summarizes the results for each subsystem. Clicking
the name of the subsystem takes you to a detailed report for that subsystem.

Details Report Section
The Details section reports the model coverage results in detail.

5-21

5 Using Model Coverage

The Details section starts with a summary of results for the model as a
whole followed by a list of subsystems and charts that the model contains.
Subsections on each subsystem and chart follow. Clicking the name of a
subsystem or chart in the model summary takes you to a detailed report
on that subsystem or chart. The section for each subsystem starts with a
summary of the test coverage results for the subsystem and a list of the
subsystems that it contains. The overview is followed by block reports, one for
each block that contains a decision point in the subsystem.

Each section of the detailed report summarizes the results for the metrics
used to test the object (model, subsystem, chart, block) to which the section

5-22

Understanding Model Coverage Reports

applies. The sections for models and subsystems give results for the model
and subsystem considered as a covered object and for the contents of the
model or subsystem.

You can also access an individual object’s subsection of the Details section
from the Simulink model as follows:

1 Right-click a Simulink block

A pop-up menu appears.

2 In the pop-up menu, select Coverage, and from the resulting pop-up
submenu, select Report.

The model coverage report appears, scrolled to the applicable Details
subsection.

Each section can include coverage results for more than one simulation run.
The report displays the results for each simulation run in a separate column.
A numeric prefix in the column heading indicates the run that produced the
data.

Decisions Analyzed Table
This table lists possible outcomes for a decision and the number of times that
an outcome occurred in each test simulation.

The report highlights outcomes that did not occur in red. Clicking the block
name causes Simulink to display the block diagram containing the block.
Simulink also highlights the block to help you find it in the diagram.

Conditions Analyzed Table
This table lists the number of occurrences of true and false conditions on each
input port of a block.

5-23

5 Using Model Coverage

MC/DC Analysis Table
This table lists the MC/DC input condition cases represented by the
corresponding block and the extent to which the reported test cases cover the
condition cases.

Each row of the table represents a condition case for a particular input to the
block. A condition case for input n of a block is a combination of input values
such that changing the value of input n alone is sufficient to change the value
of the block’s output. Input n is called the deciding input of the condition case.

The table uses a condition case expression to represent a condition case. A
condition case expression is a character string where

• The position of a character in the string corresponds to the input port
number.

• The character at the position represents the value of the input (T means
true, F means false).

• Boldfacing a character indicates that it corresponds to the value of the
deciding input.

For example, FTF represents a condition case for a three-input block where
the second input is the deciding input.

The table’s Decision/Condition column specifies the deciding input for an
input condition case. The #1 True Out column specifies the deciding input
value that causes the block to output a true value for a condition case. The

5-24

Understanding Model Coverage Reports

#1 True Out entry uses a condition case expression, for example, FF, to
express the values of all the inputs to the block, with the value of the deciding
variable indicated by boldfacing.

Parentheses around the expression indicate that the specified combination of
inputs did not occur during the first (or only) test case included in this report.
In other words, the test case did not cover the corresponding condition case.
The #1 False Out column specifies the deciding input value that causes the
block to output a false value and whether the value actually occurred during
the first (or only) test case included in the report. The report adds additional
#n True Out and #n False out columns for additional test cases, where n is
the number of the test case.

If you select Treat Simulink Logic blocks as short-circuited in the
Coverage Settings dialog box (see “Specifying Model Coverage Reporting
Options” on page 5-11), MC/DC coverage analysis does not check whether
short-circuited inputs actually occur. The MC/DC details table uses an x in
a condition expression (e.g., TFxxx) to indicate short-circuited inputs that
were not analyzed by the tool.

Navigation Arrows. The section for each block contains a backward and a
forward arrow. Clicking the forward arrow takes you to the next section in the
report that lists an uncovered outcome. Clicking the back arrow takes you
back to the previous uncovered outcome in the report.

5-25

5 Using Model Coverage

N-Dimensional Lookup Table Report
This report section displays an interactive chart that summarizes the extent
to which elements of a Lookup Table are accessed. In the following example, a
Lookup Table of 10-by-10 elements filled with random values is accessed with
x and y indices generated from two Sine Wave blocks.

In this example, table indices are 1, 2,..., 10 in each direction. The Sine Wave
2 block is out of phase with the Sine Wave 1 block by pi/2 radians. This
generates x and y numbers for the edge of a circle, which becomes apparent
when you examine the resulting Lookup Table coverage.

5-26

N-Dimensional Lookup Table Report

The report contains a two-dimensional table representing the elements of the
Lookup Table. The element indices are represented by the cell border grid
lines, which number 10 in each dimension. Areas where the Lookup Table
interpolates between table values are represented by the cell areas. Areas
of extrapolation left of element 1 and right of element 10 are represented by
cells at the edge of the table, which have no outside border.

The number of values interpolated (or extrapolated) for each cell (execution
counts) during testing is represented by a shade of green assigned to the cell.
Each of six levels of shading and the range of execution counts represented
are displayed on the side of the table.

If you click an individual table cell, you receive a dialog that displays the
index location of the cell and the exact number of execution counts generated
for it during testing. The following example shows the contents of a color
shaded cell on the right edge of the circle:

5-27

5 Using Model Coverage

Notice that the selected cell is outlined in red. You can also click on
extrapolation cells on the edge of the table, as shown.

A bold grid line indicates that at least one block input equal to its exact index
value occurred during the simulation. Click the border to display the exact
number of hits for that index value, as shown in the following example:

The following example model uses a Lookup Table of 10-by-10-by-5 elements
filled with random values.

5-28

N-Dimensional Lookup Table Report

Both the x and y table axes have the indices 1, 2,..., 10, while the z axis has the
indices 10, 20,..., 50. Lookup Table values are accessed with x and y indices
generated from the two Sine Wave blocks in the preceding example, and a z
index generated from a Ramp block.

After simulation, the following Lookup Table report appears:

5-29

5 Using Model Coverage

Instead of a two-dimensional table, the link Force Map Generation appears,
which displays the following tables:

Notice that Lookup Table coverage for a three-dimensional Lookup Table block
is reported as a set of two-dimensional tables. If you overlay these tables last
on top of first, you notice that the coverage values corkscrew up to the reader.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a
vertical bar is bold, this indicates that at least one block input was equal to
the exact index value it represents during the simulation. Click a bar to get a
report of coverage for the exact index value it represents.

5-30

N-Dimensional Lookup Table Report

You can report Lookup Table coverage for Lookup Tables of any dimension.
Coverage for four-dimensional tables is reported as sets of three-dimensional
sets like those in the preceding example. Five-dimensional tables are reported
as sets of sets of three-dimensional sets, and so on.

5-31

5 Using Model Coverage

Signal Range Analysis Report
If you select Signal Range Coverage in the Coverage Settings dialog
box, you receive a Signal Range Analysis report at the bottom of the model
coverage report. This report gives you the maximum and minimum signal
values at each block in the model measured during simulation.

Note When Inline parameters is enabled, some signal range information
may be missing (for example, if there is a gain with a value of 1). To get a
complete signal range report, clear the Inline parameters option on the
Optimization pane of the model’s active configuration set.

You can access the Signal Range Analysis report quickly with the Signal
Ranges link in the nonscrolling region at the top of the model coverage
report, as shown for the fuelsys model.

5-32

Signal Range Analysis Report

Each block is reported in hierarchical fashion: child blocks are displayed
directly under parent blocks. Each block name in the signal report is a link
that brings the block into immediate focus. For example, selecting the link
EGO sensor displays this block highlighted in its native diagram, as shown.

Selecting the link Switch displays this block in its own subsystem by looking
under the mask for EGO sensor, as shown.

5-33

5 Using Model Coverage

5-34

Colored Simulink Diagram Coverage Display

Colored Simulink Diagram Coverage Display
Model coverage displays model coverage results for individual blocks directly
in Simulink diagrams. If you enable this feature, model coverage does the
following:

• Highlights (colors) blocks that have received model coverage during
simulation

• Provides a context-sensitive display of summary model coverage
information for each block

Use the following topics to learn how to enable and interpret colored diagram
coverage display:

• “How Model Coverage Highlighting Works” on page 5-35

• “Enabling the Colored Diagram Display” on page 5-35

• “Displaying Model Coverage with Model Coloring” on page 5-36

• “Accessing Coverage Information for Colored Blocks” on page 5-38

How Model Coverage Highlighting Works
Coloring is used to highlight structural coverage in Simulink models. When
you enable coloring for model coverage results, the tool highlights blocks that
received the following types of model coverage:

• “Decision Coverage (DC)” on page 5-4

• “Condition Coverage (CC)” on page 5-4

• “Modified Condition/Decision Coverage (MC/DC)” on page 5-4

Enabling the Colored Diagram Display
You enable the model coverage colored diagram display as follows:

1 In the Simulink window, from the Tools menu, select Coverage Settings.

The Coverage Settings dialog box appears.

5-35

5 Using Model Coverage

2 In the Coverage tab of the Coverage Settings dialog box, select Enable
Coverage Reporting.

3 Select the Results tab, as shown.

The Display coverage results using model coloring option is selected
by default for all models. This check box becomes visible only after Enable
Coverage Reporting is enabled in the Coverage tab. You can disable
this option for the current session by clearing this check box.

Displaying Model Coverage with Model Coloring
You enable display coverage as described in “Enabling the Colored Diagram
Display” on page 5-35, After you enable this display, any time that the model
generates a model coverage report, individual blocks receiving coverage are
highlighted with light green or light red.

5-36

Colored Simulink Diagram Coverage Display

The light green Manual Switch blocks received full coverage during testing.
The light red blocks (the engine speed Manual Switch block, and the
fuel rate controller and engine gas dynamics subsystems) received
incomplete coverage during testing. Blocks with no color highlighting
(the Constant blocks, Scope blocks, and the throttle command Repeating
Sequence block) received no coverage at all.

Note To restore the Simulink model diagram to its original colors, right-click
a colored block and select Coverage from the resulting context menu followed
by Remove information from the resulting submenu. Alternatively, you
can select Remove Highlighting from the Simulink View menu or the
diagram’s context menu to remove model coloring.

5-37

5 Using Model Coverage

Accessing Coverage Information for Colored Blocks
“Displaying Model Coverage with Model Coloring” on page 5-36 describes
the highlighted Simulink display that appears after simulation when you
enable display coverage with model coloring in the coverage settings for the
model. Along with the highlighted Simulink display, a Coverage Display
window appears, as shown.

If you click a colored block in the Simulink model, its summarized coverage
appears in the Coverage Display window. In the preceding example, the
following summary report appears when you click the fuel rate controller
subsystem block:

Summary coverage information appears in the Coverage Display window for
the block, whose hyperlinked name appears at the top of the window. Click
the hyperlink to access the appropriate section of the coverage report for this
block. You can also see this section of the report by right-clicking the block
and selecting Coverage > Report.

You can set the Coverage Display window to display coverage for a block in
response to a hovering mouse cursor instead of a mouse click in one of two
ways:

• Select the down arrow on the right side of the Coverage Display window,
and, from the resulting menu, select Focus.

5-38

Colored Simulink Diagram Coverage Display

• Right-click a colored block and select Coverage from the resulting context
menu followed by Display details on mouse-over from the resulting
submenu.

5-39

5 Using Model Coverage

Using Model Coverage Commands
Using model coverage commands lets you automate the entire model coverage
process with MATLAB scripts. You can use model coverage commands
in MATLAB to completely set up model coverage tests, execute them in
simulation, store the results, and report them.

Use the following topics, in the order of the work flow of creating, running,
storing, and reporting model coverage tests to understand model coverage
commands:

• “Creating Tests with cvtest” on page 5-40 — Start the process by creating a
test object that specifies the model or part of the model tested.

• “Running Tests with cvsim” on page 5-42 — Execute (simulate) the test
object. This creates a results object for the test object.

• “Producing HTML Reports with cvhtml” on page 5-43 — Create a report
for the results object.

• “Saving Test Runs to a File with cvsave” on page 5-43 — Save the test
object and its results object in a file.

• “Loading Stored Coverage Test Results with cvload” on page 5-44 — Load
the file containing test and results objects to create new reports of model
coverage data.

Creating Tests with cvtest
The cvtest command creates a test specification object. Once you create the
object, you simulate it with the cvsim command.

The call to cvtest has the following default syntax:

cvto = cvtest(root)

root is the name of, or a handle to, a Simulink model or a subsystem of
a model. cvto is a handle to the resulting test specification object. Only
the specified model or subsystem and its descendants are subject to model
coverage testing.

5-40

Using Model Coverage Commands

The following command creates a test object with a specified label used for
reporting results:

cvto = cvtest(root, label)

The following command creates a test with a setup command:

cvto = cvtest(root, label, setupcmd)

The setup command is executed in the base MATLAB workspace just prior
to running the instrumented simulation. This command is useful for loading
data prior to a test.

The returned cvtest object, cvto, has the following structure.

Field Description

id Read-only internal data-dictionary
ID

modelcov Read-only internal data-dictionary
ID

rootPath Name of the system or subsystem
instrumented for analysis

label String used when reporting results

setupCmd Command executed in the base
workspace just prior to simulation.

settings.condition Set to 1 if condition coverage is
desired

settings.decision Set to 1 if decision coverage is
desired

settings.mcdc Set to 1 if MC/DC coverage is desired

settings.sigrange Set to 1 if signal range coverage is
desired

settings.tableExec Set to 1 if lookup table coverage is
desired

5-41

5 Using Model Coverage

Running Tests with cvsim
Once you create a test specification object, you simulate it with the cvsim
command.

Note You do not have to enable model coverage reporting for the model (see
“Creating and Running Test Cases” on page 5-8) to use the cvsim command.

The call to cvsim has the following default syntax:

cvdo = cvsim(cvto)

This command executes the cvtest object cvto by starting a simulation run
for the corresponding model. The results are returned in the cvdata object
cvdo.

You can also control the simulation in a cvsim command by using parameters
for the MATLAB sim command, as shown in the following examples:

• The following command returns the simulation time vector t, matrix of
state values x, and matrix of output values y.

[cvdo,t,x,y] = cvsim(cvto)

• The following command overrides default simulation values with new
values.

[cvdo,t,x,y] = cvsim(cvto, timespan, options)

See online help for the MATLAB sim command for descriptions of the
parameters t, x, y, timespan, and options in the previous examples.

You can execute multiple test objects with the cvsim command. The following
command executes a set of coverage test objects, cvto1, cvto2, ... and
returns the results in a set of cvdata objects, cdvo1, cvdo2,

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

5-42

Using Model Coverage Commands

You can also use the cvsim command to create and execute a cvtest object in
one command as shown in the following example:

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)

Producing HTML Reports with cvhtml
Once you run a test in simulation with cvsim, you produce results that are
saved to cvdata objects in MATLAB. Use the cvhtml command to produce an
HTML report of these objects.

The following command creates an HTML report of the coverage results in the
cvdata object cvdo, which is written to the file file in the current MATLAB
directory:

cvhtml(file, cvdo)

The following example creates a combined report of several cvdata objects:

cvhtml(file, cvdo1,cvdo2, ...)

The results from each object are displayed in a separate column of the HTML
report. Each cvdata data object must correspond to the same root model or
subsystem, or the function produces errors.

You can specify the detail level of the report with the value of detail, an
integer between 0 and 3, as shown in the following example:

cvhtml(file, cvdo1, cvdo2,..., detail)

Greater numbers for detail indicate greater detail. The default value is 2.

Saving Test Runs to a File with cvsave
Once you run a test with cvsim, save its coverage tests and results to a file
with the function cvsave:

cvsave(filename, model)

Save all the tests and results related to model in the text file filename.cvt:

cvsave(filename, cvto1, cvto2, ...)

5-43

5 Using Model Coverage

Save the specified tests in the text file filename.cvt. Information about
the referenced models is also saved.

You can also save specified cvdata objects to file. The following example saves
the tests, test results, and referenced models’ structure in cvdata objects to
the text file filename.cvt:

cvsave(filename, cvdo1, cvdo2, ...)

Loading Stored Coverage Test Results with cvload
The cvload command loads into memory the coverage tests and results stored
in a file by the cvsave command. The following example loads the tests and
data stored in the text file filename.cvt:

[cvtos, cvdos] = cvload(filename)

The cvtest objects that are successfully loaded are returned in cvtos, a cell
array of cvtest objects. The cvdata objects that are successfully loaded are
returned in cvdos, a cell array of cvdata objects. cvdos has the same size as
cvtos, but can contain empty elements if a particular test has no results.

In the following example, if restoretotal is 1, the cumulative results from
prior runs are restored:

[cvtos, cvdos] = cvload(filename, restoretotal)

If restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations
The following are some special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, only the
compatible results are loaded from the file and they reference the existing
model to prevent duplication.

• If the Simulink models referenced in the file are open but do not exist in
the coverage database, the coverage tool resolves the links to the models
that are already open.

5-44

Using Model Coverage Commands

• When you are loading several files that reference the same model, only the
results that are consistent with the earlier files are loaded.

Coverage Script Example
The following example is a portion of simcovdemo2.m, located in the coverage
root folder. This example demonstrates common model coverage commands.

mdl = 'slvnvdemo_ratelim_harness';

testObj1 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;

testObj2 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj2.label = 'Rising gain that temporarily exceeds slew limit';
testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;

[dataObj1,T,X,Y] = cvsim(testObj1,[0 2]);
[dataObj2,T,X,Y] = cvsim(testObj2,[0 2]);

cvhtml('ratelim_report',dataObj1,dataObj2);
cumulative = dataObj1+dataObj2;
cvsave('ratelim_testdata',cumulative);

In this example, you create two cvtest objects, testObj1 and testObj2,
and simulate them according to their specifications. Each cvtest object
uses the setupCmd property to load a data file before simulation. Decision
coverage is enabled by default, and MC/DC coverage is enabled as well. After
simulation, you use cvhtml to display the coverage results for two tests and
the cumulative coverage. Lastly, you compute cumulative coverage with the
+ operator and save the results. For another detailed example of how to use
the model coverage commands, enter simcovdemo at the MATLAB command
prompt.

5-45

5 Using Model Coverage

Model Coverage for Embedded MATLAB Function Blocks
This section describes the model coverage for an Embedded MATLAB
Function block function. Model coverage reports tell you what decision
outcomes occur during simulation and the values of the conditions that they
depend on. See the following topics for a description of Embedded MATLAB
Function block model coverage elements and model coverage for an example
Embedded MATLAB Function block function:

• “Types of Model Coverage in Embedded MATLAB Function Blocks” on page
5-46 — Lists the types of elements in an Embedded MATLAB Function
block function that receive model coverage during simulation

• “Creating a Model with Embedded MATLAB Function Block Decisions” on
page 5-47 — Creates an Embedded MATLAB Function block with decisions
and conditions that you execute later during simulation

• “Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-50 — Describes the individual coverages reported in the model
coverage report for the example Embedded MATLAB Function block

Note Model coverage is available to you only if you have a Simulink
Verification and Validation license.

Types of Model Coverage in Embedded MATLAB
Function Blocks
During simulation, the following Embedded MATLAB Function block function
statements are tested for decision coverage:

• Function header — Decision coverage is 100% if the function or subfunction
is executed.

• if — Decision coverage is 100% if the if expression evaluates to true at
least once, and false at least once.

• switch — Decision coverage is 100% if every switch case is taken,
including the fall-through case.

5-46

Model Coverage for Embedded MATLAB Function Blocks

• for — Decision coverage is 100% if the equivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and false at least once.

During simulation, the following logical conditions are tested for condition
coverage and MCDC coverage in the Embedded MATLAB Function block
function:

• if statement conditions

• while statement conditions, if present

Creating a Model with Embedded MATLAB Function
Block Decisions
In this topic you use an example model to examine model coverage of an
Embedded MATLAB Function block in Simulink. The following model
contains a single Embedded MATLAB Function block with output data sent
to a Scope block.

Double-click the Embedded MATLAB Function block to specify its program
content as shown.

5-47

5 Using Model Coverage

The run_intersect_test Embedded MATLAB Function block contains two
functions. The top-level function, run_intersect_test, sends the coordinates
for two rectangles, one fixed and the other moving, as arguments to the
subfunction rect_intersect, which tests for intersection between the two.
The origin of the moving rectangle increases by 1 in the x and y directions
with each time step.

The coordinates for the origin of the moving test rectangle are represented by
local data x1 and y1, which are both initialized to -1. For the first sample, x1
and y1 are both incremented to 0. From then on, the progression of rectangle
arguments during simulation is as follows:

5-48

Model Coverage for Embedded MATLAB Function Blocks

The fixed rectangle is shown in bold with a lower left origin of (2,4) and a
width and height of 2. At time t = 0, the first test rectangle has an origin of
(0,0) and a width and height of 2. For each succeeding sample, the origin of
the test rectangle is incremented by (1,1). The rectangles at sample times
t = 2, 3, and 4 intersect with the test rectangle.

The subfunction rect_intersect checks to see if its two rectangle arguments
intersect. Each argument consists of coordinates for the lower left corner of
the rectangle (origin), and its width and height. x values for the left and right
sides and y values for the top and bottom are calculated for each rectangle and
compared in nested if-else decisions. The function returns a logical value of
1 if the rectangles intersect and 0 if they do not.

Scope output during simulation, which plots the return value against the
sample time, confirms the intersecting rectangles for sample 2, 3, and 4 as
shown.

5-49

5 Using Model Coverage

Understanding Embedded MATLAB Function Block
Model Coverage
Model coverage reports are generated automatically after a simulation if
you specify them. See “Creating and Running Test Cases” on page 5-8 for
instructions on how to specify a model coverage report.

When simulation is finished, the model coverage report appears in a browser
window. After the summary for the model, the Details section of the model
coverage report reports on each of the parts of the model. Model coverage
for the parts of the example model in “Creating a Model with Embedded
MATLAB Function Block Decisions” on page 5-47 appears in the following
model-block-function order.

Model: intersecting_rectangles

Block: Embedded MATLAB Function

Function: run_intersect_test

Decision Lines: 1: function out =
rect_intersect_test

9: function out =
rect_intersect(rect1, rect2)

5-50

Model Coverage for Embedded MATLAB Function Blocks

22: if (top1 < bottom2 ||
top2 < bottom1)

25: if (right1 < left2 ||
right2 < left1)

The following subtopics examine the model coverage report for the example
model in reverse function-block-model order. Reversing the order helps you
make sense of the summary information that appears at the top of each
section.

Model Coverage for the Embedded MATLAB Function Block
Function run_intersect_test
Model coverage for the Embedded MATLAB Function function
run_intersect_test is reported under the linked name of the function.
Clicking this link opens the function in the Embedded MATLAB Editor.
Following the linked function name is a link to the model coverage report for
the parent Embedded MATLAB Function block of run_intersect_test.

5-51

5 Using Model Coverage

The top half of the report for the function summarizes its model coverage
results as shown. The coverage metrics for run_intersect_test include
decision, condition, and MCDC coverage. These metrics are best understood
by examining the code listing for run_intersect_test that follows.

Lines with coverage elements are marked by a highlighted line number
in the listing. Line 1 receives decision coverage on whether the top-level
function run_intersect_test is executed. Line 9 receives decision coverage
on whether the subfunction rect_intersect is executed. Lines 22 and 25
receive decision, condition, and MCDC coverage for their if statements and
conditions. Each of these lines is the subject of a report that follows the listing.

5-52

Model Coverage for Embedded MATLAB Function Blocks

Notice that the condition right1 < left2 in line 25 is highlighted in red.
This means that this condition was not tested for all of its possible outcomes
during simulation. Exactly which of the outcomes was not tested is answered
by the report for the decision in line 25.

The following subtopics display the coverage for each decision line of
run_intersect_test. The coverage for each line is titled with the line itself,
which is linked to display the function with the line highlighted.

Coverage for Line1. The coverage metrics for line 1 appear below the
listing for the function run_intersect_test.

The first line of every function receives coverage analysis indicative
of the decision to run the function in response to a call. Coverage for
run_intersect_test indicates that it executed during testing.

Coverage for Line 9. The coverage metrics for line 9 appear below the
coverage metrics for line 1.

5-53

5 Using Model Coverage

This table indicates that the subfunction rect_intersect executed during
testing.

Coverage for Line 22. Coverage metrics for line 22 appear below the
coverage metrics for line 9.

5-54

Model Coverage for Embedded MATLAB Function Blocks

The Decisions analyzed table indicates that there are two possible outcomes
for the decision in line 22: true and false. Five of the eight times it was
executed, the decision evaluated to false, and the remaining three times, it
evaluated to true. Because both possible outcomes occurred, decision coverage
is 100%.

The Conditions analyzed table sheds some additional light on the decision
in line 22. Because this decision consists of two conditions linked by a logical
OR (||) operation, only one condition must evaluate true for the decision to be
true. If the first condition evaluates to true, there is no need to evaluate the
second condition. The first condition, top1 < bottom2, was evaluated eight
times, and was true twice. This means that it was necessary to evaluate the
second condition only six times. In only one case was it true, which brings the
total true occurrences for the decision to three, as reported in the Decisions
analyzed table.

MCDC coverage looks for decision reversals that occur because one condition
outcome changes from T to F or from F to T. The MCDC analysis table
identifies all possible combinations of outcomes for the conditions that lead
to a reversal in the decision. The character x is used to indicate a condition
outcome that is irrelevant to the decision reversal. Decision-reversing
condition outcomes that are not achieved during simulation are marked with a
set of parentheses. There are no parentheses, therefore all decision-reversing
outcomes occurred and MCDC coverage is complete for the decision in line 22.

Coverage for Line 25. Coverage metrics for line 25 appear below the
coverage metrics for line 22.

5-55

5 Using Model Coverage

The line 25 decision, if (right1 < left2 || right2 < left1), is nested in
the if statement of the line 22 decision and is evaluated only if the line 22
decision is false. Because the line 22 decision evaluated false five times, line
25 is evaluated five times, three of which were false. Because both the true
and false outcomes were achieved, decision coverage for line 25 is 100%.

Because line 25, like line 22, has two conditions related by a logical OR
operator (||), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false five times, condition 2 is tested five times. Of these,
condition 2 tests true two times and false three times, which accounts for the
two occurrences of the true outcome for this decision.

Because the first condition of the line 25 decision does not test true, both
outcomes did not occur for that condition and the condition coverage for
the first condition is highlighted with a rose color. MCDC coverage is also

5-56

Model Coverage for Embedded MATLAB Function Blocks

highlighted in the same way for a decision reversal based on the true outcome
for that condition.

Coverage for run_intersect_test. The metrics that summarize coverage for
the entire run_intersect_test function are reported prior to its listing and
are repeated here as shown.

The results summarized in the coverage metrics summary can be expressed
in the following conclusions:

• There are six decision outcomes reported for run_intersect_test in the
line reports: one for line 1 (executed), one for line 9 (executed), two for
line 22 (true and false), and two for line 25 (true and false). The decision
coverage for each line shows 100% decision coverage. This means that
decision coverage for run_intersect_test is six of six possible outcomes,
or 100%.

• There are four conditions reported for run_intersect_test in the line
reports. Lines 22 and 25 each have two conditions, and each condition
has two condition outcomes (true and false), for a total of eight condition
outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcome except for the first condition of line 25 (right1

5-57

5 Using Model Coverage

< left2). This means that condition coverage for run_intersect_test is
seven of eight, or 88%.

• The MCDC coverage tables for decision lines 22 and 25 each list two
cases of decision reversal for each condition, for a total of four possible
reversals. Only the decision reversal for a change in the evaluation of the
condition right1 < left2 of line 25 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal
cases were tested for during simulation, for a coverage of 75%.

Model Coverage for the Embedded MATLAB Function Block
and the Model
The model coverage report for the block Embedded MATLAB shows that it has
no decisions of its own apart from its function. However, it does repeat the
summary information for its function run_intersect_test as coverage for its
descendent objects, as shown.

Because there are no additional coverage objects in the model apart from
the Embedded MATLAB Function block, the remaining report for the
model intersecting_rectangles also repeats the preceding coverage for
descendent objects, as shown.

5-58

Model Coverage for Embedded MATLAB Function Blocks

5-59

5 Using Model Coverage

5-60

6

Customizing the Model
Advisor

The Model Advisor is a tool that runs a set of checks and tasks on a Simulink
model or subsystem to uncover conditions and configuration settings that
result in inaccurate or inefficient simulation or code generation. For more
information about the Model Advisor, see “Consulting the Model Advisor” in
the Simulink documentation.

Simulink Verification and Validation provides an API that allows you to
customize the behavior of the Model Advisor by defining your own custom
tasks and checks, and writing your own callback functions. This chapter
describes how to customize Model Advisor, covering the following topics:

The Customization Process (p. 6-3) Describes how to create the
customization file.

Demo and Code Example (p. 6-4) Describes how to run a demo that
shows how to customize Model
Advisor.

Creating Callback Functions for
Checks (p. 6-5)

Describes check callback functions
and how to create them.

Defining Custom Checks (p. 6-12) Describes the properties of custom
checks and how to define them.

Defining Custom Tasks (p. 6-17) Describes the properties of custom
tasks and how to define them.

6 Customizing the Model Advisor

Defining a Process Callback
Function (p. 6-20)

Describes process callback functions
and how to create them.

Registering Custom Checks and
Tasks (p. 6-23)

Describes how to register custom
checks and tasks in Model Advisor.

6-2

The Customization Process

The Customization Process
To customize Model Advisor, create an M-file called sl_customization.m
and include this file on your MATLAB path. The M-file should contain a set
of functions for registering and defining custom checks and tasks. Follow
these guidelines:

Function Description When Required

sl_customization() Registers custom
checks and tasks
with the Simulink
customization manager
at startup (see
“Registering Custom
Checks and Tasks” on
page 6-23)

Required for all Model
Advisor customizations

One or more check
definition functions

Defines all custom
checks (see “Defining
Custom Checks” on
page 6-12)

Required for custom
checks

One or more task
definition functions

Defines all custom
tasks (see “Defining
Custom Tasks” on page
6-17)

Required only for
custom tasks

Check callback
functions

Defines the actions
of the custom checks
(see “Creating Callback
Functions for Checks”
on page 6-5)

Required for custom
checks. You must write
one callback function
for each custom check.

One process callback
function

Specifies actions to be
performed at different
stages of Model Advisor
execution (see “Defining
a Process Callback
Function” on page 6-20)

Optional

6-3

6 Customizing the Model Advisor

Demo and Code Example
Simulink Verification and Validation provides a demo that shows how to
customize Model Advisor by adding three custom checks, a custom task
for grouping the checks, and a process callback function. The demo also
provides the source code of the sl_customization.m file that executes the
customizations. The following sections present excerpts from this source code
to illustrate how to write functions for customizing Model Advisor.

To run the demo:

1 Type slvnvdemo_mdladv at the MATLAB command line.

2 Follow the online instructions.

6-4

Creating Callback Functions for Checks

Creating Callback Functions for Checks
A callback functions specifies the actions a check performs on a model or
subsystem. You must create a callback function for each custom check so that
Model Advisor can execute the function when the check is selected by a user.
There are several styles of callback functions:

• “Simple Check Callback Function” on page 6-5

• “Detailed Check Callback Function” on page 6-6

• “Check Callback Function with Hyperlinked Results” on page 6-7

All styles of check callback functions provide one or more return arguments
for displaying the results after executing the check. In some cases, return
arguments are strings or cell arrays of strings that support embedded HTML
tags for text formatting. It is recommended that you limit the use of HTML
tags in result strings to be compatible with alternate output formats.

Simple Check Callback Function
Use the simple callback function to return a simple status, perhaps to indicate
whether the model passed or failed the check, or to provide a recommendation
for correcting an issue. The keyword for the simple callback function is
StyleOne. This keyword is required for the check definition (see “Defining
Custom Checks” on page 6-12).

The simple callback function takes the following arguments:

Argument I/O Type Description

system Input Pathname to the model or subsystem analyzed
by Model Advisor

result Output MATLAB string that supports embedded HTML
tags for text formatting

Here is an example of a simple callback function for a custom check that looks
for models that do not use white as the background color for their Simulink
windows:

6-5

6 Customizing the Model Advisor

function result = SampleStyleOneCallback(system)

if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')

result = '<p>Passed';

else

result = ['<p>It is recommended to select a Simulink window screen

color of white to ensure a readable and printable model.'...

'Click <a href="matlab: set_param(bdroot,''ScreenColor'',

''white'')">''here to change screen color to white.'];

end

Detailed Check Callback Function
Use the detailed check callback function to return and organize results
as strings in a layered, hierarchical fashion. The function provides two
output arguments that allow you to associate text descriptions with one or
more paragraphs of detail. The keyword for the simple callback function is
StyleTwo. This keyword is required for the check definition (see “Defining
Custom Checks” on page 6-12).

The detailed callback function takes the following arguments:

Argument I/O Type Description

system Input Pathname to the model or system
analyzed by Model Advisor

ResultDescription Output Cell array of MATLAB strings that
supports embedded HTML tags
for text formatting. Model
Advisor concatenates the
ResultDescription string
with the corresponding array of
ResultDetails strings.

ResultDetails Output Cell array of cell arrays, each of
which contains one or more strings

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

6-6

Creating Callback Functions for Checks

Here is an example of a detailed check callback function that checks
optimization settings for simulation and code generation:

function [ResultDescription, ResultDetails] =

SampleStyleTwoCallback(system)

ResultDescription ={};

ResultDetails ={};

model = bdroot(system);

% Check simulation optimization setting

ResultDescription{end+1} = ['<p>Check simulation optimization settings:']

if strcmp(get_param(model,'BlockReduction'),'off');

ResultDetails{end+1} = {'It is recommended to turn on Block reduction

optimization option.'};

else

ResultDetails{end+1} = {'Passed'};

end

% Check code generation optimization setting

ResultDescription{end+1} = ['<p>Check code generation optimization

settings:'];

ResultDetails{end+1} = {};

if strcmp(get_param(model,'LocalBlockOutputs'),'off');

ResultDetails{end}{end+1} = 'It is recommended to turn on Enable local

block outputs option.
';

end

if strcmp(get_param(model,'BufferReuse'),'off');

ResultDetails{end}{end+1} = 'It is recommended to turn on Reuse block

outputs option.
';

end

if isempty(ResultDetails{end})

ResultDetails{end}{end+1} = 'Passed';

end

Check Callback Function with Hyperlinked Results
This callback function automatically displays hyperlinks for every object
returned by the check to make it easy to locate problem areas in your model
or subsystem. The keyword for this type of callback function is StyleThree.

6-7

6 Customizing the Model Advisor

This keyword is required for the check definition (see “Defining Custom
Checks” on page 6-12).

This callback function takes the following arguments:

Argument I/O Type Description

system Input Pathname to the model or system
analyzed by Model Advisor

ResultDescription Output Cell array of MATLAB strings that
supports embedded HTML tags for
text formatting

ResultDetails Output Cell array of cell arrays, each
of which contains one or more
Simulink objects such as blocks,
ports, lines, and Stateflow charts.
The objects must be in the form of a
handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

Model Advisor automatically concatenates each string from
ResultDescription with the corresponding array of objects from
ResultDetails. Model Advisor displays the contents of ResultDetails as
a set of hyperlinks, one for each object returned in the cell arrays. When
you click a hyperlink, Model Advisor displays the target object highlighted
in your Simulink model. Here is an example of a check callback function
with hyperlinked results. This example checks a model for consistent use of
font type and font size in its blocks.

function [ResultDescription, ResultDetails] =

SampleStyleThreeCallback(system)

ResultDescription ={};

ResultDetails ={};

% find all blocks inside current system

6-8

Creating Callback Functions for Checks

allBlks = find_system(system);

% block diagram doesn't have font property

% get blocks inside current system that have font property

allBlks = setdiff(allBlks, {system});

% find regular font name blocks

regularBlks = find_system(allBlks,'FontName','Arial');

% look for different font blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ['<p>It is recommended to use same font

for blocks to ensure uniform appearance of model.'...

'The following blocks use a font other than Arial: '];

ResultDetails{end+1} = searchResult;

else

ResultDescription{end+1} = ['<p>All block font names are identical.'];

ResultDetails{end+1} = {};

end

% find regular font size blocks

regularBlks = find_system(allBlks,'FontSize',12);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ['<p>It is recommended to use same font

size for blocks to ensure uniform appearance of model.'...

'The following blocks use a font size other than 12: '];

ResultDetails{end+1} = searchResult;

else

ResultDescription{end+1} = ['<p>All block font sizes are identical.'];

ResultDetails{end+1} = {};

end

After running the check associated with this callback function, Model Advisor
displays the results as follows:

6-9

6 Customizing the Model Advisor

����
%�	��
������&���������
�����	������
��������

'��
���	��	������	
��

6-10

Creating Callback Functions for Checks

Clicking the first hyperlink — to the input slvnvdemo_mdladv/Input —
displays the Simulink model with Input highlighted, as follows:

(�������
�������	

6-11

6 Customizing the Model Advisor

Defining Custom Checks
You define custom checks in one or more functions that specify the properties
of each instance of the class Simulink.MdlAdvisorCheck. You must define one
instance of this class for each custom check you want to add to Model Advisor.

Properties of Model Advisor Checks
The following table describes the properties of the Simulink.MdlAdvisorCheck
class:

Property Data Type Default
Value

Description

Title String '' (null
string)

Name of the check as it
should appear in Model
Advisor

TitleID String '' (null
string)

Permanent, unique
identifier for the check.
Typically, TitleID is
set to the check Title
string, but the value of
TitleID remains constant
even if the Title of the
check changes. Tasks
should refer to checks by
TitleID (the permanent
identifier), not by Title.

TitleTips String '' (null
string)

Tooltip that displays help
text when you move your
mouse over the check

CallbackHandle Function
handle

[] (empty
handle)

Handle to the callback
function for the check

6-12

Defining Custom Checks

Property Data Type Default
Value

Description

CallbackContext Enumeration 'None' Context for checking the
model or subsystem:

• None = No special
requirements

• PostCompile = Model
must be compiled

CallbackStyle Enumeration 'StyleOne' Type of callback function:

• StyleOne = simple
check callback function

• StyleTwo = detailed
check callback function

• StyleThree = check
callback function with
hyperlinked results

Group String '' (null
string)

Mechanism for grouping
checks hierarchically into
categories. Model Advisor
displays a folder in its
left pane for each group
name that you specify.
To display nested folders,
separate multiple names
with vertical bars, as in
this example:

MyCompany|MyDepartment

Visible Boolean true Show or hide check?

• true = Display check in
Model Advisor

• false = Hide check

6-13

6 Customizing the Model Advisor

Property Data Type Default
Value

Description

Enable Boolean true Can user enable and
disable check?

• true = Display check
box control

• false = Hide check box
control

Value Boolean true Initial status:

• true = Check is enabled

• false = Check is
disabled

LicenseName Cell array { } (empty
cell array)

Cell array of names of
product licenses required
to enable the check.
Model Advisor does not
display the check if license
requirements are not met.

Tip To find the correct
text for license strings,
type help license at the
MATLAB command line.

Result Cell array { } (empty
cell array)

Cell array used for
storing the results
returned by the callback
function referenced by
CallbackHandle

6-14

Defining Custom Checks

How Visible, Enable, and Value Properties Interact
Typically, you modify the behavior of Visible, Enable, and Value properties
in a process callback function (see “Defining a Process Callback Function” on
page 6-20). The following chart illustrates how these properties interact:

��������
	
��

�������
�����

�����

���
��
������

����������
��
������

�����

���

��������
�����

���

	������
�����

�����

���������
�������
�

	������
�������
�
��������
���������
�������
�

	������
�����

�����

Code Example: Check Definition Function
Here is an example of a function that defines the custom checks associated
with the callback functions described in “Creating Callback Functions for
Checks” on page 6-5. The check definition function returns a cell array of
custom checks to be added to Model Advisor.

6-15

6 Customizing the Model Advisor

function recordCellArray = defineModelAdvisorChecks

recordCellArray = {};

% --- sample check 1

rec = Simulink.MdlAdvisorCheck;

rec.Title = 'Check Simulink block font';

rec.TitleID = 'Check Simulink block font';

rec.TitleTips = 'A sample check with style three callback';

rec.CallbackHandle = @SampleStyleThreeCallback;

rec.CallbackContext = 'None';

rec.CallbackStyle = 'StyleThree';

rec.Group = 'Demo';

% add current record into recordCellArray

recordCellArray{end+1} = rec;

% --- sample check 2

rec = Simulink.MdlAdvisorCheck;

rec.Title = 'Check Simulink window screen color';

rec.TitleID = 'Check Simulink window screen color';

rec.TitleTips = 'A sample check with style one callback';

rec.CallbackHandle = @SampleStyleOneCallback;

rec.CallbackContext = 'None';

rec.CallbackStyle = 'StyleOne';

rec.Group = 'Demo';

% add current record into recordCellArray

recordCellArray{end+1} = rec;

% --- sample check 3

rec = Simulink.MdlAdvisorCheck;

rec.Title = 'Check model optimization settings';

rec.TitleID = 'Check model optimization settings';

rec.TitleTips = 'A sample check with style two callback';

rec.CallbackHandle = @SampleStyleTwoCallback;

rec.CallbackContext = 'None';

rec.CallbackStyle = 'StyleTwo';

rec.Group = 'Demo';

% add current record into recordCellArray

recordCellArray{end+1} = rec;

6-16

Defining Custom Tasks

Defining Custom Tasks
Tasks are used to group checks in Model Advisor by functionality or usage.
You define custom tasks in one or more functions that specify the properties of
each instance of the class Simulink.MdlAdvisorTask. You must define one
instance of this class for each custom task you want to add to Model Advisor.

Properties of Model Advisor Tasks
The following table describes the properties of the Simulink.MdlAdvisorTask
class:

Property Data Type Default
Value

Description

Title String '' (null string) Name of the task as it
should appear in Model
Advisor

TitleID String '' (null string) Permanent, unique
identifier for the task.
Typically, TitleID is set
to the task Title string,
but the value of TitleID
remains constant even
if the Title of the task
changes.

TitleTips String '' (null string) Tooltip that displays
help text when you
move your mouse over
the task

Visible Boolean true Show or hide task?

• true = Display task
in Model Advisor

• false = Hide task

6-17

6 Customizing the Model Advisor

Property Data Type Default
Value

Description

Enable Boolean true Can user enable and
disable task?

• true = Display check
box control for task

• false = Hide check
box control for task

Value Boolean true Initial status:

• true = Task is
enabled

• false = Task is
disabled

CheckTitleIDs Cell array { } (empty cell
array)

Cell array of TitleIDs
of checks associated
with this task

How Visible, Enable, and Value Properties Interact
for Tasks
These properties interact the same way for tasks as for checks (see “How
Visible, Enable, and Value Properties Interact” on page 6-15).

Code Example: Task Definition Function
Here is an example of a task definition function that associates the task with
the checks defined in “Code Example: Check Definition Function” on page
6-15. The task definition function returns a cell array of custom tasks to
be added to Model Advisor.

function taskCellArray = defineModelAdvisorTasks

taskCellArray = {};

% create a sample task

task = Simulink.MdlAdvisorTask;

6-18

Defining Custom Tasks

task.Title = 'Demo task';

task.TitleID = 'Demo task';

task.TitleTips = 'Contains demo checks';

task.CheckTitleIDs = {'Check Simulink block font',

'Check Simulink window screen color',

'Check model optimization settings'};

% add current task into taskCellArray

taskCellArray{end+1} = task;

6-19

6 Customizing the Model Advisor

Defining a Process Callback Function
The process callback function is an optional function that lets you modify the
appearance of checks and tasks in Model Advisor, and process check results at
run time. The process callback function specifies actions to be performed at
different stages of Model Advisor execution:

• configure stage: Model Advisor executes configure actions at startup,
after all checks and tasks have been initialized. At this stage, you can
specify actions to customize how Model Advisor constructs lists of checks
and tasks by modifying Visible, Enable, and Value properties. For
example, you can remove, reorder, rename, and selectively display checks
and tasks.

• process_results stage: Model Advisor executes process_results actions
after checks complete execution. You can specify actions to examine and
report on the results returned by check callback functions.

Process Callback Function Arguments
The process callback function takes the following arguments:

Argument I/O Type Data Type Description

stage Input Enumeration Specifies the stages at
which process callback
actions are executed.
Use this argument in
a switch statement to
specify actions for the
stages configure and
process_results.

system Input Pathname Model or subsystem to
be analyzed by Model
Advisor

6-20

Defining a Process Callback Function

Argument I/O Type Data Type Description

checkCellArray Input/Output Cell array As input, the array of
checks constructed in the
check definition function.
As output, the array of
checks modified by actions
in the configure stage.

taskCellArray Input/Output Cell array As input, the array of
tasks constructed in the
task definition function.
As output, the array of
tasks modified by actions
in the configure stage.

Code Example: Process Callback Function
Here is an example of a process callback function that specifies actions in
the configure stage to enable only the custom checks assigned to the Demo
group in “Code Example: Check Definition Function” on page 6-15. In the
process_results stage, this function pops up an informative dialog box for
checks that do not pass.

function [checkCellArray taskCellArray] =

ModelAdvisorProcessFunction(stage, system, checkCellArray,

taskCellArray)

switch stage

case 'configure'

for i=1:length(checkCellArray)

% disble all checks that do not belong to Demo group

if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Enable = false;

checkCellArray{i}.Value = false;

end

end

case 'process_results'

for i=1:length(checkCellArray)

% pop up dialog if check does not pass

if checkCellArray{i}.Selected &&

(strcmp(checkCellArray{i}.TitleID,

6-21

6 Customizing the Model Advisor

'Check Simulink window screen color'))

if isempty(strfind(checkCellArray{i}.Result, 'Passed'))

msgbox(checkCellArray{i}.Result, 'Check Result',

'modal');

end

end

end

end

6-22

Registering Custom Checks and Tasks

Registering Custom Checks and Tasks
To register checks and tasks in Model Advisor, you must create the function
sl_customization() in the sl_customization.m file on your MATLAB
path. This function accepts one argument, a handle to an object called
Simulink.CustomizationManager, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks and tasks. You should use these methods to register customizations
specific to your application, as described in “Methods for Registering Custom
Checks and Tasks” on page 6-23.

Simulink reads sl_customization.m files when it starts. If you subsequently
change the contents of your customization file, update your environment
by performing these tasks:

1 Enter the following command at the MATLAB command line:

sl_refresh_customizations

2 Restart Model Advisor.

Methods for Registering Custom Checks and Tasks
The Simulink.CustomizationManager class includes the following methods
for registering custom checks and tasks:

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Adds the checks specified by the check definition function to the
end of the standard list of checks executed by Model Advisor. The
checkDefinitionFcn argument is a handle to the function that defines
all custom checks to be added to Model Advisor as instances of the
Simulink.MdlAdvisorCheck class (see “Defining Custom Checks” on page
6-12).

• addModelAdvisorTaskFcn (@taskDefinitionFcn)

Adds the tasks specified by the task definition function to the end of the
standard list of tasks executed by Model Advisor. The taskDefinitionFcn

6-23

6 Customizing the Model Advisor

argument is a handle to the function that defines all custom tasks to be
added to Model Advisor as instances of the Simulink.MdlAdvisorTask
class (see “Defining Custom Tasks” on page 6-17).

• addModelAdvisorProcessFcn (@modelAdvisorProcessFcn)

Adds the process callback function for Model Advisor (see “Defining a
Process Callback Function” on page 6-20).

Code Example: Methods for Registering Custom
Checks and Tasks
The following code example registers custom checks, custom tasks, and a
process callback function:

function sl_customization(cm)

% register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register custom tasks

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

% register custom process callback

cm.addModelAdvisorProcessFcn(@ModelAdvisorProcessFunction);

6-24

7

Functions — By Category

Requirements Management
Interface (p. 7-2)

Access Requirements Management
Interface

Model Coverage (p. 7-3) Configure and execute model
coverage tests; store and report test
results

7 Functions — By Category

Requirements Management Interface
rmi Requirements Management

Interface API

rminav Start Requirements Management
Interface

7-2

Model Coverage

Model Coverage
conditioninfo Display condition coverage

information for model object

cvexit Exit model coverage environment

cvhtml Produce HTML report from model
coverage objects in memory

cvload Load coverage tests and results
stored in file

cvmodelview Display model coverage results with
model coloring

cvsave Save coverage tests and results to
file

cvsim Simulate and return model coverage
results for test objects

cvtest Create model coverage test
specification object

decisioninfo Display decision coverage
information for model object

mcdcinfo Display modified condition/decision
coverage information for model
object

sigrangeinfo Display signal range coverage
information for model object

tableinfo Display lookup table coverage
information for model object

7-3

7 Functions — By Category

7-4

8

Functions — Alphabetical
List

conditioninfo

Purpose Display condition coverage information for model object

Syntax coverage = conditioninfo(cvdo, object)
coverage = conditioninfo(cvdo, object, ignore_descendants)
[coverage, description] = conditioninfo(cvdo, object)

Description coverage = conditioninfo(cvdo, object) returns condition
coverage results from the cvdata object cvdo for the model component
specified by object. See “Specifying a Model Object” on page 8-3 for
more information about the object argument. The value of coverage is
a two-element vector of form [covered_outcomes total_outcomes],
the elements of which are defined as follows:

• covered_outcomes — the number of condition outcomes satisfied
for object

• total_outcomes — the total number of condition outcomes for
object

Note coverage is empty if cvdo does not contain condition coverage
results for object.

coverage = conditioninfo(cvdo, object, ignore_descendants)
returns condition coverage results for object, ignoring the coverage of
its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, description] = conditioninfo(cvdo, object)
returns condition coverage results and textual descriptions of each
condition in object. description is a structure array containing the
following fields:

• text — string describing a condition or the block port to which it
applies

• trueCnts — number of times the condition was true in a simulation

• falseCnts — number of times the condition was false in a simulation

8-2

conditioninfo

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow block and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable
condition coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.condition = 1;

8-3

conditioninfo

data = cvsim(testObj)

Afterward, issue the following commands to retrieve the condition
coverage results for the Logic block (in the Gain subsystem) and
determine its percentage of condition outcomes covered.

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = conditioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also decisioninfo, mcdcinfo

8-4

cvexit

Purpose Exit model coverage environment

Syntax cvexit

Description cvexit exits the model coverage environment. Issuing this command
causes the Model Coverage Tool to close the Coverage Display window
and remove coloring from a block diagram that displays its model
coverage results.

8-5

cvhtml

Purpose Produce HTML report from model coverage objects in memory

Syntax cvhtml(file, cvdo)
cvhtml(file, cvdo1, cvdo2,...)
cvhtml(file, cvdo1, cvdo2,..., options)
cvhtml(file, cvdo1, cvdo2,..., options, detail)

Description Use the cvhtml command to produce an HTML report from cvdata
objects you produce when you run a model coverage test in simulation.

Note The model must be open when using the cvhtml command to
generate its coverage report.

cvhtml(file, cvdo) creates an HTML report of the coverage results
in the cvdata object cvdo, which is written to the file file in the
current MATLAB directory.

cvhtml(file, cvdo1, cvdo2,...) creates a combined report of
several cvdata objects. The results from each object are displayed
in a separate column of the HTML report. Each cvdata object must
correspond to the same root model or subsystem, or the function
produces errors.

cvhtml(file, cvdo1, cvdo2,..., options) creates a combined
report of several cvdata objects using the report options specified by
the options string. The table in “Report Options” on page 8-7 lists
available options and their default settings. To enable an option, set
it equal to 1 (e.g., '-hTR=1'); to disable an option, set it equal to 0
(e.g., '-bRG=0'). To specify multiple report options, list individual
options in a single options string separated by commas or spaces (e.g.,
'-hTR=1 -bRG=0 -scm=0').

cvhtml(file, cvdo1, cvdo2,..., options, detail) creates a
combined report of several cvdata objects and specifies the detail level
of the report with the value of detail, an integer between 0 and 3.

8-6

cvhtml

Greater numbers for detail indicate greater detail. The default value
is 2.

Report
Options

The following table summarizes the report options that you can specify
using cvhtml. See “Settings” on page 5-15 under the “Report Tab”
section in the Simulink Verification and Validation User’s Guide for
more information.

Option Description Default
Setting

-aTS Include each test in the model summary on

-bRG Produce bar graphs in the model summary on

-bTC Use two color bar graphs (red, blue) off

-hTR Display hit/count ratio in the model summary off

-nFC Do not report fully covered model objects off

-scm Include cyclomatic complexity numbers in
summary

on

-bcm Include cyclomatic complexity numbers in
block details

on

8-7

cvload

Purpose Load coverage tests and results stored in file

Syntax [cvtos, cvdos] = cvload(filename)
[cvtos, cvdos] = cvload(filename, restoretotal)

Description The cvload command loads into memory the coverage tests and results
stored in a file by the cvsave command.

[cvtos, cvdos] = cvload(filename) loads the tests and data stored
in the text file filename.cvt. The cvtest objects that are successfully
loaded are returned in cvtos, a cell array of cvtest objects. The cvdata
objects that are successfully loaded are returned in cvdos, a cell array
of cvdata objects. cvdos has the same size as ctvos, but can contain
empty elements if a particular test has no results.

[cvtos, cvdos] = cvload(filename, restoretotal) restores
the cumulative results from prior runs if restoretotal is 1. If
restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations

The following are some special considerations for using the cvload
command:

• If a model with the same name exists in the coverage database, only
the compatible results that reference the existing model are loaded to
prevent duplication.

• If the Simulink models referenced from the file are open but do not
exist in the coverage database, the coverage tool resolves the links to
the existing models.

• When you are loading several files that reference the same model,
only the results that are consistent with the earlier files are loaded.

8-8

cvmodelview

Purpose Display model coverage results with model coloring

Syntax cvmodelview(cvdo)

Description cvmodelview(cvdo) displays coverage results from the cvdata object
cvdo by coloring the Simulink model (see “Displaying Model Coverage
with Model Coloring” on page 5-36).

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, and execute
testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)

Afterward, issue the following command to display the model coverage
results by coloring the block diagram.

cvmodelview(data)

8-9

cvsave

Purpose Save coverage tests and results to file

Syntax cvsave(filename, model)
cvsave(filename, cvto1, cvto2, ...)
cvsave(filename, cvdo1, cvdo2, ...)

Description Save the coverage tests and results from simulations to a file with the
function cvsave.

cvsave(filename, model) saves all the tests (cvtest objects) and
results (cvdata objects) in memory related to the model model in the
text file filename.cvt.

cvsave(filename, cvto1, cvto2, ...) saves the tests in the
cvtest objects cvto1, cvto2, ... in the text file filename.cvt.
Information about the referenced models is also saved.

cvsave(filename, cvdo1, cvdo2, ...) saves the tests, test results,
and referenced models’ structure for cvdata objects cvdo1, cvdo2, ... to
the text file filename.cvt.

8-10

cvsim

Purpose Simulate and return model coverage results for test objects

Syntax cvdo = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto, timespan, options)
[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)
[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

Description You simulate a test specification object (a cvtest object) with the cvsim
command.

Note You do not have to enable model coverage reporting for the model
to use the cvsim command.

cvdo = cvsim(cvto) executes the cvtest object cvto by starting a
simulation run for the corresponding model. The results are returned
in the cvdata object cvdo.

[cvdo,t,x,y] = cvsim(cvto) returns the time vector t, matrix of
state values x, and matrix of output values y from the simulation. Refer
to the sim command in the Simulink documentation for descriptions of
the parameters t, x, and y.

[cvdo,t,x,y] = cvsim(cvto, timespan, options) returns the time
vector t, matrix of state values x, and matrix of output values y from
the simulation, and overrides default simulation values with the values
for timespan and options. Refer to the sim command in the Simulink
documentation for descriptions of the parameters t, x, y, timespan,
and options.

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd) creates the cvtest
object cvto and simulates it in one command. The arguments label
and setupcmd are passed directly to the cvtest command, which
creates the cvtest object cvto.

8-11

cvsim

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...) executes the
cvtest objects cvto1, cvto2, ... and returns the results in the set of
cvdata objects cdvo1, cvdo2,

8-12

cvtest

Purpose Create model coverage test specification object

Syntax cvto = cvtest(root)
cvto = cvtest(root, label)
cvto = cvtest(root, label, setupcmd)

Description The cvtest command creates a test specification object, that you
simulate with the cvsim command.

cvto = cvtest(root) creates a test object with the handle cvto. root
is the name of, or a handle to, a Simulink model or a subsystem of a
model. Only the specified model or subsystem and its descendants are
subject to model coverage testing.

cvto = cvtest(root, label) creates a test object with the label
label, which is used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with
the setup command setupcmd and labels it with label. The setup
command is executed in the base MATLAB workspace just prior to
running the instrumented simulation. This command is useful for
loading data prior to a test.

A test object has the following structure.

Field Description

id Read-only internal
data-dictionary ID

modelcov Read-only internal
data-dictionary ID

rootPath Name of the system or subsystem
instrumented for analysis

label String used when reporting
results

8-13

cvtest

Field Description

setupCmd Command executed in the
base workspace just prior to
simulation.

settings.condition Set to 1 if condition coverage is
desired

settings.decision Set to 1 if decision coverage is
desired

settings.mcdc Set to 1 if MC/DC coverage is
desired

settings.sigrange Set to 1 if signal range coverage
is desired

settings.tableExec Set to 1 if lookup table coverage
is desired

8-14

decisioninfo

Purpose Display decision coverage information for model object

Syntax coverage = decisioninfo(cvdo, object)
coverage = decisioninfo(cvdo, object, ignore_descendants)
[coverage, description] = decisioninfo(cvdo, object)

Description coverage = decisioninfo(cvdo, object) returns decision coverage
results from the cvdata object cvdo for the model component specified
by object. See “Specifying a Model Object” on page 8-16 for more
information about the object argument. The value of coverage is a
two-element vector of form [covered_outcomes total_outcomes], the
elements of which are defined as follows:

• covered_outcomes — the number of decision outcomes satisfied for
object

• total_outcomes — the total number of decision outcomes for object

Note coverage is empty if cvdo does not contain decision coverage
results for object.

coverage = decisioninfo(cvdo, object, ignore_descendants)
returns decision coverage results for object, ignoring the coverage of
its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, description] = decisioninfo(cvdo, object) returns
decision coverage results and textual descriptions of decision points
associated with object. description is a structure array containing
the following fields:

• decision.text — string describing a decision point, e.g., 'U > LL'

• decision.outcome.text — string describing a decision outcome, i.e.,
'true' or 'false'

• decision.outcome.executionCount — number of times a decision
outcome occurred in a simulation

8-15

decisioninfo

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow block and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable decision
coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.decision = 1;

8-16

decisioninfo

data = cvsim(testObj)

Afterward, issue the following commands to retrieve the decision
coverage results for the Saturation block and determine its percentage
of decision outcomes covered.

blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = decisioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also conditioninfo, mcdcinfo

8-17

mcdcinfo

Purpose Display modified condition/decision coverage information for model
object

Syntax coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description coverage = mcdcinfo(cvdo, object) returns modified
condition/decision coverage results from the cvdata object cvdo for the
model component specified by object. See “Specifying a Model Object”
on page 8-19 for more information about the object argument. The
value of coverage is a two-element vector of form [covered_outcomes
total_outcomes], the elements of which are defined as follows:

• covered_outcomes — the number of condition/decision outcomes
satisfied for object

• total_outcomes — the total number of condition/decision outcomes
for object

Note coverage is empty if cvdo does not contain modified
condition/decision coverage results for object.

coverage = mcdcinfo(cvdo, object, ignore_descendants)
returns modified condition/decision coverage results for object,
ignoring the coverage of its descendent objects if ignore_descendants
is true (i.e., 1).

[coverage, description] = mcdcinfo(cvdo, object) returns
modified condition/decision coverage results and textual descriptions
of each condition/decision in object. description is a structure array
containing the following fields:

• text — string denoting whether the condition/decision is associated
with a block output or Stateflow transition

8-18

mcdcinfo

• condition.text — string describing a condition/decision or the
block port to which it applies

• condition.achieved — logical array indicating whether a condition
case has been fully covered

• condition.trueRslt — string representing a condition case
expression that produces a true result

• condition.falseRslt — string representing a condition case
expression that produces a false result

See “MC/DC Analysis Table” on page 5-24 for more information about
the data contained in these fields.

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow block and the ID of an
object contained in that chart

8-19

mcdcinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable
modified condition/decision coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.mcdc = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the modified
condition/decision coverage results for the Logic block (in the Gain
subsystem) and determine its percentage of condition/decision outcomes
covered.

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = mcdcinfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

See Also conditioninfo, decisioninfo

8-20

rmi

Purpose Requirements Management Interface API

Syntax rmi setup
rmi setupdoors
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

reqlinks = rmi('createempty')
reqlinks = rmi('get', object)
rmi('set', object, reqlinks)
rmi('cat', object, reqlinks)
cnt = rmi('count', object)
rmi('clearall', object)

cmdstr = rmi('navcmd', object)
[cmdstr, titlestr] = rmi('navcmd', object)
guidstr = rmi('guidget', object)
object = rmi('guidlookup', model, guidstr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
rmi('objCopy', object)

Description Use the rmi command to interact programmatically with the
Requirements Management Interface (RMI).

• “RMI Setup” on page 8-21

• “Requirement Link Management” on page 8-22

• “Navigation and Display Options” on page 8-22

RMI Setup

rmi setup configures the RMI for use with your computer and installs
the DOORS interface, if needed. See “Configuring the Requirements

8-21

rmi

Management Interface” on page 2-4 for more information about using
this command to set up the RMI.

rmi register linktypename registers the custom link type specified
by the M-file function linktypename. See “Linking to Custom Types of
Requirements Documents” on page 2-28 for more information.

rmi unregister linktypename removes the custom link type specified
by the M-file function linktypename.

rmi linktypelist displays a list of the currently registered link types.
The list indicates whether each link type is built-in or custom and
provides the path to the M-file function used for its registration.

Requirement Link Management

reqlinks = rmi('createempty') creates an empty instance of the
requirement links data structure. See “Requirement Links Data
Structure” on page 8-23 for more information.

reqlinks = rmi('get', object) returns the requirement links data
structure for object. object is the name or handle of a Simulink or
Stateflow object with which requirements can be associated.

rmi('set', object, reqlinks) sets the requirement links data
structure reqlinks to object.

rmi('cat', object, reqlinks) appends the requirement links data
structure reqlinks to the end of the existing structure associated with
object. If no structure exists, the RMI sets reqlinks to object.

cnt = rmi('count', object) returns the number of requirement
links associated with object.

rmi('clearall', object) removes the requirement links data
structure associated with object, deleting its requirements.

Navigation and Display Options

cmdstr = rmi('navcmd', object) returns the MATLAB command
string used to navigate to object. object is the name or handle
of a Simulink or Stateflow object with which requirements can be

8-22

rmi

associated. See “Navigating to Simulink from External Documents” on
page 2-41 for more information.

[cmdstr, titlestr] = rmi('navcmd', object) returns the
MATLAB command string cmdstr and the title string titlestr that
provides descriptive text for object.

guidstr = rmi('guidget', object) returns the globally unique
identifier for object. A globally unique identifier is created for object
if it lacks one. See “Providing Unique Object Identifiers” on page 2-41
for more information.

object = rmi('guidlookup', model, guidstr) returns the object
name in model that has the globally unique identifier specified by
guidstr.

rmi('highlightModel', object) highlights all of the objects in the
parent model of object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects
in the parent model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered
index in the requirements document associated with object. index is
an integer that represents the nth requirement linked to object.

dialog = rmi('edit', object) displays the Requirements dialog
box for object and returns the handle of the dialog box.

rmi('objCopy', object) resets the globally unique identifier for
object, preserving its requirement links.

Requirement
Links Data
Structure

Requirement links are represented using a MATLAB structure array
with the following fields:

• doc — a string identifying the requirements document, equivalent to
the Document field of the Requirements dialog box.

• id — a string defining a particular location in the requirements
document. The first character in the string specifies the type of

8-23

rmi

identifier that follows. Valid characters that can appear at the
beginning of the string are

Character Identifier Example

? Search text, the first
occurrence of which is located
in the requirements document

'?Requirement 1'

@ Named item, such as a
bookmark in a Word document
or an anchor in an HTML
document

'@my_req'

Page or item number '#21'

> Line number '>3156'

$ Worksheet range in a
spreadsheet

'$A2:C5'

• linked — a Boolean value specifying whether the requirement link is
accessible for report generation and highlighting. The default value
is 1 (true), specifying that the RMI can highlight the model object and
include its requirement link in generated reports.

• description — a string describing the requirement, equivalent to
the Description field of the Requirements dialog box.

• keywords — an optional string supplementing description,
equivalent to the User tag field of the Requirements dialog box.

• reqsys — a string identifying the link type registration name. This
field displays 'other' for built-in link types.

8-24

rminav

Purpose Start Requirements Management Interface

Syntax rminav

Description rminav starts the Requirements Management Interface Navigator
window.

If you specified reqsys = 'OTHERS' in the MATLAB file reqmgropts.m,
the standard version of the Requirements Management Interface
Navigator window opens. You can associate requirements documents
written in HTML, Microsoft Word, or Microsoft Excel with Simulink
models, Stateflow diagrams, and MATLAB M-files.

If you specified reqsys = 'DOORS' in reqmgropts.m, the DOORS
version of the Requirements Management Interface Navigator window
opens. You can associate DOORS requirements with Simulink models,
Stateflow diagrams, and MATLAB M-files.

To associate DOORS requirements with MATLAB objects, you must
start MATLAB with the /automation option.

8-25

sigrangeinfo

Purpose Display signal range coverage information for model object

Syntax [min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description [min, max] = sigrangeinfo(cvdo, object) returns the minimum
and maximum signal values output by the model component object
within the cvdata object cvdo. See “Specifying a Model Object” on
page 8-26 for more information about the object argument. If object
outputs a vector, min and max are also vectors.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the
minimum and maximum signal values associated with the output port
portID of the Simulink block object.

Specifying a Model Object

The object argument specifies an object in the Simulink model or
Stateflow diagram that received decision coverage. Valid values for
object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow block and the ID of an
object contained in that chart

8-26

sigrangeinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a
Stateflow block and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable signal
range coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.sigrange = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the signal range
for the Product block.

blk_handle = get_param([mdl, '/Product'], 'Handle');
[minVal, maxVal] = sigrangeinfo(data, blk_handle)

8-27

tableinfo

Purpose Display lookup table coverage information for model object

Syntax coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description coverage = tableinfo(cvdo, object) returns lookup table coverage
results from the cvdata object cvdo for the model component specified
by object. object is the full path or handle to a Simulink lookup table
block or a model containing such a block. The value of coverage is a
two-element vector of form [covered_intervals total_intervals],
the elements of which are defined as follows:

• covered_intervals — the number of interpolation/extrapolation
intervals satisfied for object

• total_intervals — the total number of interpolation/extrapolation
intervals for object

Note coverage is empty if cvdo does not contain lookup table coverage
results for object.

coverage = tableinfo(cvdo, object, ignore_descendants)
returns lookup table coverage results for object, ignoring the coverage
of its descendent objects if ignore_descendants is true (i.e., 1).

[coverage, exeCounts] = tableinfo(cvdo, object) returns
lookup table coverage results and the execution count for each
interpolation/extrapolation interval in the lookup table block specified
by object. exeCounts is an array having the same dimensionality as
the lookup table block; however, its size has been extended to allow for
the lookup table extrapolation intervals.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo,
object) returns lookup table coverage results, the execution count for

8-28

tableinfo

each interpolation/extrapolation interval, and the execution counts for
breakpoint equality. brkEquality is a cell array containing vectors that
identify the number of times in a simulation the lookup table block
input was equivalent to a breakpoint value. Each vector represents the
breakpoints along a different lookup table dimension.

Example The following commands open the slvnvdemo_cv_small_controller
demo model, create the test specification object testObj, enable lookup
table coverage for testObj, and execute testObj.

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.tableExec = 1;
data = cvsim(testObj)

Afterward, issue the following commands to retrieve the lookup table
coverage results for the Gain Table block (in the Gain subsystem)
and determine its percentage of interpolation/extrapolation intervals
covered.

blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');
cov = tableinfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

8-29

9

Blocks — Alphabetical List

System Requirements

Purpose List system requirements in Simulink diagrams

Library Simulink Verification and Validation

Description The System Requirements block lists all the system requirements
associated with the model or subsystem depicted in the current
diagram. It does not list requirements associated with individual blocks
in the diagram.

You can place this block anywhere in a diagram. It is not connected
to other Simulink blocks. You cannot have more than one System
Requirements block in a diagram.

When you drag the System Requirements block from the library
browser into your Simulink diagram, it is automatically populated with
the system requirements, as shown.

Each of the listed requirements is an active link to the actual
requirements document. When you double-click on a requirement name,
the associated requirements document opens in its editor window,
scrolled to the target location.

9-2

System Requirements

If the System Requirements block exists in a diagram, it automatically
updates the requirements listing as you add, modify, or delete
requirements for the model or subsystem.

For more information on using the System Requirements block, see
“Displaying the System Requirements in a Diagram” on page 2-49.

Dialog
Box and
Parameters

To access the Block Parameters dialog box for the System Requirements
block, right-click on the System Requirements block and, from
the resulting pop-up menu, select Mask Parameters. The Block
Parameters dialog box opens, as shown.

The Block Parameters dialog box for the System Requirements block
contains one parameter.

Block Title
The title of the system requirements list in the diagram. The
default title is System Requirements. You can type a customized
title, for example, Engine Requirements.

9-3

A

Examples

Use this list to find examples in the documentation.

A Examples

Requirements Management Interface
“Adding Requirement Links to an Object” on page 2-8
“Viewing Requirements Documents” on page 2-13
“Making Selection-Based Links” on page 2-22
“Creating a Custom Link Requirement Type” on page 2-31
“Viewing Objects with Requirement Links” on page 2-44
“Generating a Requirements Report” on page 2-47
“Displaying the System Requirements in a Diagram” on page 2-49
“Including Requirements with Generated Code” on page 2-55

Requirements Management Interface - DOORS Version
“Linking Objects to DOORS Requirements” on page 3-7
“Synchronizing a Model with DOORS” on page 3-13
“Navigating from Simulink to DOORS” on page 3-26
“Navigating from DOORS to Simulink” on page 3-28

Verification Manager
“Opening the Verification Manager” on page 4-5
“Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-10
“Using Enabling and Disabling Tools in the Verification Manager” on page
4-14
“Managing Verification Requirements” on page 4-18

Model Coverage
“Details Report Section” on page 5-21
“Decisions Analyzed Table” on page 5-23
“Conditions Analyzed Table” on page 5-23
“MC/DC Analysis Table” on page 5-24

A-2

Model Coverage

“N-Dimensional Lookup Table Report” on page 5-26
“Signal Range Analysis Report” on page 5-32
“Displaying Model Coverage with Model Coloring” on page 5-36
“Creating a Model with Embedded MATLAB Function Block Decisions”
on page 5-47
“Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-50

A-3

A Examples

A-4

Index

IndexA
adding links to requirements 2-8
adding requirements 2-5
Assert block appearance 4-13

C
categorical lists of functions 7-1
changing links to requirements 2-11
closing Signal Builder Requirements pane 4-8
colored diagram model coverage display 5-35

enabling 5-35
condition coverage

Embedded MATLAB Function blocks 5-57
statements in Embedded MATLAB

Function block 5-47
configuring MATLAB

for DOORS version 3-5
cvhtml function

model coverage 5-43
reference 7-3 8-6

cvload function
model coverage 5-44
reference 7-3 8-8

cvsave function
model coverage 5-43
reference 7-3 8-10

cvsim function
model coverage 5-42
reference 7-3 8-11

cvtest function
model coverage 5-40
reference 7-3 8-13

D
decision coverage

Embedded MATLAB Function blocks 5-57
statements in Embedded MATLAB

Function blocks 5-46

demos
simcovdemo model coverage demo 5-8

disabling Model Verification blocks across test
groups 4-14

DOORS
additional installation for 3-3
starting 3-5

DOORS Requirements Management Interface
block type descriptions 3-16
definition for object 3-13
from Simulink to DOORS 3-26
hierarchical numbers 3-16
naming of surrogate exported module 3-16
object identifiers 3-16
opening the object in Simulink, Stateflow,

or MATLAB 3-30
overview 3-2
saving formal modules 3-19
starting MATLAB for 3-5
synchronizing models with DOORS 3-13
synchronizing objects with DOORS formal

module 3-13
viewing model elements with

requirements 3-24
viewing requirements 3-24

E
Embedded MATLAB Function blocks

condition coverage 5-57
condition coverage statements 5-47
decision coverage 5-57
decision coverage statements 5-46
MCDC coverage 5-58
MCDC coverage statements 5-47
model coverage 5-46
model coverage example 5-47
types of model coverage 5-46

enabling Model Verification blocks across test
groups 4-14

Index-1

Index

F
functions

categorical lists of 7-1
cvhtml 7-3 8-6
cvload 7-3 8-8
cvsave 7-3 8-10
cvsim 7-3 8-11
cvtest 7-3 8-13
model coverage 7-3
rminav 7-2 8-25
start old Requirements Management

Interface 7-2

I
icons for Model Verification blocks in

Verification Manager 4-11
installing DOORS 3-3

L
linking model objects to requirements 2-8
Lookup Table block in model coverage

report 5-26
Lookup Table model coverage

n-dimensional 5-31
three-dimensional example 5-28
two-dimensional example 5-26

M
MCDC coverage

Embedded MATLAB Function blocks 5-58
statements in Embedded MATLAB

Function blocks 5-47
MCDC table

condition cases 5-24
model coverage

colored Simulink diagram display 5-35
colored simulink diagram example 5-36

commands in MATLAB 5-40
Embedded MATLAB Function blocks 5-46
enabling colored diagram display 5-35
enabling colored simulink diagram

display 5-35
HTML settings 5-15
introduction 5-3
Lookup Table block report 5-26
MCDC table 5-24
n-dimensional Lookup Table 5-31
settings in dialog 5-11
signal range analysis report 5-32
Summary report section 5-20
three-dimensional Lookup Table

example 5-28
two-dimensional Lookup Table 5-26
understanding report 5-20

model coverage demo
simcovdemo 5-8

model coverage functions 7-3
cvhtml 5-43
cvload 5-44
cvsave 5-43
cvsim 5-42
cvtest 5-40

Model Verification blocks
block appearance 4-12
disabling for test groups 4-10
enabling for test groups 4-10
icons 4-11
parameter settings 4-2
using individually 4-2

models
running test cases 5-8

modifying requirements 2-5

O
objects

linking model objects to requirements 2-8

Index-2

Index

viewing objects with requirements 2-44
old Requirements Management Interface 7-2
opening a Signal Builder block 4-6
operating system requirements 1-3

P
parameters for Model Verification blocks 4-2

R
report

model coverage HTML options 5-15
understanding model coverage report 5-20

requirements
adding 2-5
adding to test groups 4-19
for Model Verification block settings 4-18
for Requirements Management Interface

for DOORS 3-2
in generated code 2-55
linking to model objects 2-8
modifying 2-5
viewing 2-5
viewing for test groups 4-21
viewing objects with 2-44

requirements documents
editing 2-13
viewing 2-13

requirements links
editing 2-11

Requirements Management Interface
overview 2-3

Requirements Management Interface for
DOORS
block type descriptions 3-16
definition of object in DOORS 3-13
from Simulink to DOORS 3-26
hierarchical numbers 3-16

naming of surrogate exported
modules 3-16

object identifiers 3-16
opening the object in Simulink or

Stateflow 3-30
overview 3-2
saving formal modules 3-19
starting 3-5
starting MATLAB for 3-5
synchronizing models with DOORS 3-13
synchronizing objects with DOORS formal

module 3-13
viewing model elements with

requirements 3-24
viewing requirements 3-24

Requirements pane for Verification
Manager 4-18

rminav function
reference 7-2 8-25

S
Signal Builder block

opening 4-6
Signal Builder dialog box

closing Verification Manager Requirements
pane 4-8

signal range analysis report in model
coverage 5-32

simcovdemo
model coverage demo 5-8

starting DOORS 3-5
starting MATLAB for DOORS 3-5
starting Requirements Management Interface

for DOORS 3-5
Summary section of model coverage

report 5-20
synchronizing models with DOORS 3-13
system requirements 1-3

MATLAB 1-3

Index-3

Index

Microsoft Excel 1-3
Microsoft Word 1-3
operating system 1-3
Simulink 1-3
Stateflow 1-3
Telelogic DOORS 1-3

T
test case commands 5-8
test groups

adding requirements 4-19
disabling Model Verification blocks 4-10
enabling Model Verification blocks 4-10
Model Verification blocks enabled

across 4-14

V
verification blocks

example of use 4-2
icons 4-11
requirements for test groups 4-18
stopping simulation 4-4

Verification Manager
closing Requirements pane 4-8
disabling Model Verification blocks for test

groups 4-10
enabled/disabled block appearance 4-12
enabling Model Verification blocks for test

groups 4-10
flat display 4-9
hierarchical display 4-9
icons for Model Verification blocks 4-11
opening 4-5
Requirements pane 4-18

viewing objects with requirements 2-44
viewing requirements 2-5

Index-4

	toc
	Getting Started
	What Is Simulink Verification and Validation?
	System Requirements
	Operating System Requirements
	Product Requirements

	Organization of This User's Guide

	Managing Model Requirements
	What Is the Requirements Management Interface?
	Configuring the Requirements Management Interface
	Adding and Viewing Requirement Links
	Object and Document Types
	Location Types

	Adding Requirement Links to an Object
	Viewing Requirements Documents
	Resolving the Document Path
	Relative Path Specified Example
	No Path Specified Example
	Absolute Path Specified Example

	Adding Requirement Links to Multiple Objects Simultaneously
	Deleting All Requirement Links for Multiple Objects Simultaneous

	Selection-Based Linking
	Opening the External Application
	Specifying Your Linking Preferences
	Making Selection-Based Links
	Navigating from the Requirements Document to the Simulink Model

	Linking to Custom Types of Requirements Documents
	Why Create a Custom Link Type?
	Custom Link Type Registration
	Built-In Link Types
	Link Properties
	Link Type Properties
	Creating a Custom Link Requirement Type
	Creating a Document Index

	Navigating to Simulink from External Documents
	Providing Unique Object Identifiers
	Using the rmiobjnavigate Utility
	Determining the Navigation Command
	Using the ActiveX Navigation Control
	Typical Code Sequence for Establishing Two-Way Links

	Viewing Objects with Requirement Links
	Generating a Requirements Report
	Displaying the System Requirements in a Diagram
	Adding the System Requirements Block
	Renaming the System Requirements Block
	Changing Fonts for the System Requirements Block

	Including Requirements with Generated Code

	Managing Model Requirements with DOORS
	What Is the Requirements Management Interface for DOORS?
	Configuring the Requirements Management Interface for DOORS
	Installing DOORS Before RMI
	Installing DOORS After RMI
	Upgrading DOORS
	Manual Installation for DOORS

	Starting the Requirements Management Interface for DOORS
	Linking Objects to DOORS Requirements
	Creating a DOORS Requirement Object
	Linking a Simulink or Stateflow Object to a DOORS Requirement

	Synchronizing DOORS with the Simulink Model
	Synchronizing a Model with DOORS
	Customizing the Level of Synchronization Detail
	Customizing the DOORS Synchronization Settings
	Linking Requirements to the DOORS Synchronized Module

	Navigating Between Model Objects and DOORS
	Viewing Model Elements with Requirements
	Navigating from Simulink to DOORS
	Navigating Through the Synchronized Module

	Navigating from DOORS to Simulink
	Navigating Through the Synchronized Module

	Managing Model Verification Blocks
	Using Model Verification Blocks
	Using the Verification Manager
	Opening the Verification Manager
	Enabling and Disabling Model Verification Blocks with the Verifi
	Using Enabling and Disabling Tools in the Verification Manager

	Managing Verification Requirements

	Using Model Coverage
	Introduction to Model Coverage
	How Model Coverage Works
	Types of Model Coverage
	Cyclomatic Complexity
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MC/DC)
	Lookup Table Coverage (LUT)

	Blocks That Receive Model Coverage

	Using Model Coverage
	Creating and Running Test Cases

	Specifying Model Coverage Reporting Options
	Coverage Tab
	Enable Coverage Reporting
	Coverage Instrumentation Path
	Coverage Metrics

	Results Tab
	Save Cumulative Results in Workspace Variable
	Save Last Run in Workspace Variable
	Increment Variable Name with Each Simulation
	Update Results on Pause
	Display Coverage Results Using Model Coloring

	Report Tab
	Generate HTML Report
	Settings
	Cumulative Runs
	Last Run
	Additional Data to Include in Report

	Options Tab
	Treat Simulink Logic Blocks as Short-Circuited
	Warn When Unsupported Blocks Exist in a Model
	Disable Coverage for Blocks Used in Assertion Checks

	Understanding Model Coverage Reports
	Summary Report Section
	Details Report Section
	Decisions Analyzed Table
	Conditions Analyzed Table
	MC/DC Analysis Table

	N-Dimensional Lookup Table Report
	Signal Range Analysis Report
	Colored Simulink Diagram Coverage Display
	How Model Coverage Highlighting Works
	Enabling the Colored Diagram Display
	Displaying Model Coverage with Model Coloring
	Accessing Coverage Information for Colored Blocks

	Using Model Coverage Commands
	Creating Tests with cvtest
	Running Tests with cvsim
	Producing HTML Reports with cvhtml
	Saving Test Runs to a File with cvsave
	Loading Stored Coverage Test Results with cvload
	cvload Special Considerations

	Coverage Script Example

	Model Coverage for Embedded MATLAB Function Blocks
	Types of Model Coverage in Embedded MATLAB Function Blocks
	Creating a Model with Embedded MATLAB Function Block Decisions
	Understanding Embedded MATLAB Function Block Model Coverage
	Model Coverage for the Embedded MATLAB Function Block Function r
	Model Coverage for the Embedded MATLAB Function Block and the Mo

	Customizing the Model Advisor
	The Customization Process
	Demo and Code Example
	Creating Callback Functions for Checks
	Simple Check Callback Function
	Detailed Check Callback Function
	Check Callback Function with Hyperlinked Results

	Defining Custom Checks
	Properties of Model Advisor Checks
	How Visible, Enable, and Value Properties Interact
	Code Example: Check Definition Function

	Defining Custom Tasks
	Properties of Model Advisor Tasks
	How Visible, Enable, and Value Properties Interact for Tasks
	Code Example: Task Definition Function

	Defining a Process Callback Function
	Process Callback Function Arguments
	Code Example: Process Callback Function

	Registering Custom Checks and Tasks
	Methods for Registering Custom Checks and Tasks
	Code Example: Methods for Registering Custom Checks and Tasks

	Functions — By Category
	Requirements Management Interface
	Model Coverage

	Functions — Alphabetical List
	Blocks — Alphabetical List
	Examples
	Requirements Management Interface
	Requirements Management Interface - DOORS Version
	Verification Manager
	Model Coverage

	Index

